BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7936404)

  • 1. Monomeric amphiphilic forms of acetylcholinesterase appear early during brain development and may correspond to biosynthetic precursors of the amphiphilic G4 forms.
    Inestrosa NC; Moreno RD; Fuentes ME
    Neurosci Lett; 1994 May; 173(1-2):155-8. PubMed ID: 7936404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental regulation of mouse brain monomeric acetylcholinesterase.
    Moreno RD; Campos FO; Dajas F; Inestrosa NC
    Int J Dev Neurosci; 1998 Apr; 16(2):123-34. PubMed ID: 9762585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphilic properties of acetylcholinesterase monomers in mouse plasma.
    García-Ayllón MS; Gómez JL; Vidal CJ
    Neurosci Lett; 1999 Apr; 265(3):211-4. PubMed ID: 10327168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of monomeric acetylcholinesterase into tetrameric and asymmetric forms.
    Brockman SK; Usiak MF; Younkin SG
    J Biol Chem; 1986 Jan; 261(3):1201-7. PubMed ID: 3944084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential inhibition of acetylcholinesterase molecular forms in rat brain.
    Ogane N; Giacobini E; Messamore E
    Neurochem Res; 1992 May; 17(5):489-95. PubMed ID: 1528356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaline treatment of muscle microsomes releases amphiphilic and hydrophilic forms of acetylcholinesterase.
    Moya-Quiles MR; Villalba-Sánchez J; Muñoz-Delgado E; Vidal CJ
    Biochim Biophys Acta; 1992 May; 1121(1-2):88-96. PubMed ID: 1599955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphiphilic and hydrophilic forms of acetyl- and butyrylcholinesterase in human brain.
    Sáez-Valero J; Tornel PL; Muñoz-Delgado E; Vidal CJ
    J Neurosci Res; 1993 Aug; 35(6):678-89. PubMed ID: 8411269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potencies and selectivities of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer's disease brain.
    Rakonczay Z
    Acta Biol Hung; 2003; 54(2):183-9. PubMed ID: 14535624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular forms of acetyl- and butyrylcholinesterase in normal and dystrophic mouse brain.
    Moral-Naranjo MT; Cabezas-Herrera J; Vidal CJ
    J Neurosci Res; 1996 Jan; 43(2):224-34. PubMed ID: 8820970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholinesterase of human intestinal tissue affected by Hirschsprung's disease: effect of magnesium chloride on isoforms.
    Johnson G; Moore SW; Purves LR
    Clin Chim Acta; 1995 Dec; 243(2):115-28. PubMed ID: 8747488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of acetylcholinesterase transcripts and molecular forms during development in the central nervous system of the quail.
    Anselmet A; Fauquet M; Chatel JM; Maulet Y; Massoulié J; Vallette FM
    J Neurochem; 1994 Jun; 62(6):2158-65. PubMed ID: 8189224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The membrane form of acetylcholinesterase from rat brain contains a 20 kDa hydrophobic anchor.
    Boschetti N; Liao J; Brodbeck U
    Neurochem Res; 1994 Mar; 19(3):359-65. PubMed ID: 8177377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased expression of acetylcholinesterase T and R transcripts during hematopoietic differentiation is accompanied by parallel elevations in the levels of their respective molecular forms.
    Chan RY; Adatia FA; Krupa AM; Jasmin BJ
    J Biol Chem; 1998 Apr; 273(16):9727-33. PubMed ID: 9545308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular forms of acetylcholinesterase in two sublines of human erythroleukemia K562 cells. Sensitivity or resistance to phosphatidylinositol-specific phospholipase C and biosynthesis.
    Toutant JP; Richards MK; Krall JA; Rosenberry TL
    Eur J Biochem; 1990 Jan; 187(1):31-8. PubMed ID: 2298208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation and distribution of acetylcholinesterase molecular forms in the mouse cochlea.
    Emmerling MR; Sobkowicz HM
    Hear Res; 1988; 32(2-3):137-45. PubMed ID: 3360674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures.
    Monnet-Tschudi F; Zurich MG; Schilter B; Costa LG; Honegger P
    Toxicol Appl Pharmacol; 2000 Jun; 165(3):175-83. PubMed ID: 10873710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo and in vitro effects of diisopropyl fluorophosphate and paraoxon on individual molecular forms of rat brain acetylcholinesterase.
    Volpe MT; Bisso GM; Michalek H
    Neurochem Res; 1990 Oct; 15(10):975-9. PubMed ID: 2077431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat.
    Milatovic D; Dettbarn WD
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):20-8. PubMed ID: 8560475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrameric (G4) acetylcholinesterase: structure, localization, and physiological regulation.
    Fernandez HL; Moreno RD; Inestrosa NC
    J Neurochem; 1996 Apr; 66(4):1335-46. PubMed ID: 8627284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholinesterases of the nematode Steinernema carpocapsae. Characterization of two types of amphiphilic forms differing in their mode of membrane association.
    Arpagaus M; Richier P; Berge JB; Toutant JP
    Eur J Biochem; 1992 Aug; 207(3):1101-8. PubMed ID: 1323459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.