These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7936666)

  • 41. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation.
    Fode C; Binkert C; Dennis JW
    Mol Cell Biol; 1996 Sep; 16(9):4665-72. PubMed ID: 8756623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of growth factor(s) produced by chemically transformed hamster dermal fibroblasts.
    Katoh Y
    J Cancer Res Clin Oncol; 1985; 110(2):177-80. PubMed ID: 4044633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A genetic approach to the role of energy metabolism in the growth of tumor cells: tumorigenicity of fibroblast mutants deficient either in glycolysis or in respiration.
    Franchi A; Silvestre P; Pouysségur J
    Int J Cancer; 1981 Jun; 27(6):819-27. PubMed ID: 7287229
    [No Abstract]   [Full Text] [Related]  

  • 44. Relationship between increased aerobic glycolysis and DNA synthesis initiation studied using glycolytic mutant fibroblasts.
    Pouysségur J; Franchi A; Silvestre P
    Nature; 1980 Oct; 287(5781):445-7. PubMed ID: 7432468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hearts of this ILK rely on TNNI3K, a MAPKKK that regulated TNNI3.
    Luft FC
    J Mol Med (Berl); 2003 May; 81(5):279-80. PubMed ID: 12836637
    [No Abstract]   [Full Text] [Related]  

  • 46. Transformation of mammalian cells by constitutively active MAP kinase kinase.
    Mansour SJ; Matten WT; Hermann AS; Candia JM; Rong S; Fukasawa K; Vande Woude GF; Ahn NG
    Science; 1994 Aug; 265(5174):966-70. PubMed ID: 8052857
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Allosteric SHP2 inhibition increases apoptotic dependency on BCL2 and synergizes with venetoclax in FLT3- and KIT-mutant AML.
    Popescu B; Stahlhut C; Tarver TC; Wishner S; Lee BJ; Peretz CAC; Luck C; Phojanakong P; Camara Serrano JA; Hongo H; Rivera JM; Xirenayi S; Chukinas JA; Steri V; Tasian SK; Stieglitz E; Smith CC
    Cell Rep Med; 2023 Nov; 4(11):101290. PubMed ID: 37992684
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An optimized Tet-On system for conditional control of gene expression in sea urchins.
    Khor JM; Ettensohn CA
    Development; 2023 Jan; 150(1):. PubMed ID: 36607745
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation.
    Scalia P; Williams SJ; Fujita-Yamaguchi Y; Giordano A
    Cell Cycle; 2023 Jan; 22(1):1-37. PubMed ID: 36005738
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators.
    Tan T; Wu C; Liu B; Pan BF; Hawke DH; Su Z; Liu S; Zhang W; Wang R; Lin SH; Kuang J
    Mol Biol Cell; 2022 Oct; 33(12):ar115. PubMed ID: 35976701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Charting oncogenicity of genes and variants across lineages via multiplexed screens in teratomas.
    Parekh U; McDonald D; Dailamy A; Wu Y; Cordes T; Zhang K; Tipps A; Metallo C; Mali P
    iScience; 2021 Oct; 24(10):103149. PubMed ID: 34646987
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence.
    Li JJ; Kovach AR; DeMonia M; Slemmons KK; Oristian KM; Chen C; Linardic CM
    Sci Rep; 2021 Aug; 11(1):16505. PubMed ID: 34389744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 40 Years of RAS-A Historic Overview.
    Fernández-Medarde A; De Las Rivas J; Santos E
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34062774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SREBP1 regulates mitochondrial metabolism in oncogenic KRAS expressing NSCLC.
    Ruiz CF; Montal ED; Haley JA; Bott AJ; Haley JD
    FASEB J; 2020 Aug; 34(8):10574-10589. PubMed ID: 32568455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mechanism of cancer drug addiction in ALK-positive T-Cell lymphoma.
    Rajan SS; Amin AD; Li L; Rolland DC; Li H; Kwon D; Kweh MF; Arumov A; Roberts ER; Yan A; Basrur V; Elenitoba-Johnson KSJ; Chen XS; Puvvada SD; Lussier YA; Bilbao D; Lim MS; Schatz JH
    Oncogene; 2020 Mar; 39(10):2103-2117. PubMed ID: 31804622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation.
    Marampon F; Ciccarelli C; Zani BM
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31126017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways.
    Wee P; Wang Z
    Cancers (Basel); 2017 May; 9(5):. PubMed ID: 28513565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Doxycycline Inhibits IL-17-Stimulated MMP-9 Expression by Downregulating ERK1/2 Activation: Implications in Myogenic Differentiation.
    Obradović H; Krstić J; Kukolj T; Trivanović D; Đorđević IO; Mojsilović S; Jauković A; Jovčić G; Bugarski D; Santibañez JF
    Mediators Inflamm; 2016; 2016():2939658. PubMed ID: 28042204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration.
    Harrington KM; Clevenger CV
    J Biol Chem; 2016 Oct; 291(41):21388-21406. PubMed ID: 27489110
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1.
    Tang Z; Dai S; He Y; Doty RA; Shultz LD; Sampson SB; Dai C
    Cell; 2015 Feb; 160(4):729-744. PubMed ID: 25679764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.