These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7937069)

  • 1. The DEF data base of sequence based protein fold class predictions.
    Reczko M; Bohr H
    Nucleic Acids Res; 1994 Sep; 22(17):3616-9. PubMed ID: 7937069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein fold recognition by mapping predicted secondary structures.
    Russell RB; Copley RR; Barton GJ
    J Mol Biol; 1996 Jun; 259(3):349-65. PubMed ID: 8676374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PreSSAPro: a software for the prediction of secondary structure by amino acid properties.
    Costantini S; Colonna G; Facchiano AM
    Comput Biol Chem; 2007 Oct; 31(5-6):389-92. PubMed ID: 17888742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iFC²: an integrated web-server for improved prediction of protein structural class, fold type, and secondary structure content.
    Chen K; Stach W; Homaeian L; Kurgan L
    Amino Acids; 2011 Mar; 40(3):963-73. PubMed ID: 20730460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein structure prediction by threading methods: evaluation of current techniques.
    Lemer CM; Rooman MJ; Wodak SJ
    Proteins; 1995 Nov; 23(3):337-55. PubMed ID: 8710827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of protein folding class from amino acid composition.
    Dubchak I; Holbrook SR; Kim SH
    Proteins; 1993 May; 16(1):79-91. PubMed ID: 8497486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein topology classification using two-stage support vector machines.
    Gubbi J; Shilton A; Parker M; Palaniswami M
    Genome Inform; 2006; 17(2):259-69. PubMed ID: 17503398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores.
    Wilson CA; Kreychman J; Gerstein M
    J Mol Biol; 2000 Mar; 297(1):233-49. PubMed ID: 10704319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors limiting the performance of prediction-based fold recognition methods.
    de la Cruz X; Thornton JM
    Protein Sci; 1999 Apr; 8(4):750-9. PubMed ID: 10211821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein structural classes.
    Chou KC; Zhang CT
    Crit Rev Biochem Mol Biol; 1995; 30(4):275-349. PubMed ID: 7587280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of local structure in proteins using a library of sequence-structure motifs.
    Bystroff C; Baker D
    J Mol Biol; 1998 Aug; 281(3):565-77. PubMed ID: 9698570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.
    Ortiz AR; Kolinski A; Skolnick J
    J Mol Biol; 1998 Mar; 277(2):419-48. PubMed ID: 9514747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein fold recognition using sequence-derived predictions.
    Fischer D; Eisenberg D
    Protein Sci; 1996 May; 5(5):947-55. PubMed ID: 8732766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.