BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7937116)

  • 21. Selecting rRNA binding sites for the ribosomal proteins L4 and L6 from randomly fragmented rRNA: application of a method called SERF.
    Stelzl U; Spahn CM; Nierhaus KH
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4597-602. PubMed ID: 10781065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA sequence of the 16S rRNA/23S rRNA intercistronic spacer of two rDNA operons of the archaebacterium Methanococcus vannielii.
    Jarsch M; Böck A
    Nucleic Acids Res; 1983 Nov; 11(21):7537-44. PubMed ID: 6359060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2.
    Kitahara K; Kajiura A; Sato NS; Suzuki T
    Nucleic Acids Res; 2007; 35(12):4018-29. PubMed ID: 17553838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the reliability of RNA folding using statistical mechanics.
    Huynen M; Gutell R; Konings D
    J Mol Biol; 1997 Apr; 267(5):1104-12. PubMed ID: 9150399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of the recognition sites on 16S and 23S rRNAs from E. coli for the formation of 16S-23S rRNA complex.
    Thanaraj TA; Kolaskar AS; Pandit MW
    J Biomol Struct Dyn; 1988 Dec; 6(3):587-92. PubMed ID: 3078239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phylogenetic analysis of the family Thermaceae with an emphasis on signature position and secondary structure of 16S rRNA.
    Chen C; Zhao S; Ben K
    FEMS Microbiol Lett; 2003 Apr; 221(2):293-8. PubMed ID: 12725941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNase J is involved in the 5'-end maturation of 16S rRNA and 23S rRNA in Sinorhizobium meliloti.
    Madhugiri R; Evguenieva-Hackenberg E
    FEBS Lett; 2009 Jul; 583(14):2339-42. PubMed ID: 19540834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lead-catalysed specific cleavage of ribosomal RNAs.
    Winter D; Polacek N; Halama I; Streicher B; Barta A
    Nucleic Acids Res; 1997 May; 25(9):1817-24. PubMed ID: 9108166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs.
    Branlant C; Krol A; Machatt MA; Pouyet J; Ebel JP; Edwards K; Kössel H
    Nucleic Acids Res; 1981 Sep; 9(17):4303-24. PubMed ID: 6170936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Major centers of motion in the large ribosomal RNAs.
    Paci M; Fox GE
    Nucleic Acids Res; 2015 May; 43(9):4640-9. PubMed ID: 25870411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ribosomal environment of tRNA: crosslinks to rRNA from positions 8 and 20:1 in the central fold of tRNA located at the A, P, or E site.
    Rinke-Appel J; Jünke N; Osswald M; Brimacombe R
    RNA; 1995 Dec; 1(10):1018-28. PubMed ID: 8595557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA.
    Schnare MN; Damberger SH; Gray MW; Gutell RR
    J Mol Biol; 1996 Mar; 256(4):701-19. PubMed ID: 8642592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural constraints identified with covariation analysis in ribosomal RNA.
    Shang L; Xu W; Ozer S; Gutell RR
    PLoS One; 2012; 7(6):e39383. PubMed ID: 22724009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of translation based on intersubunit complementarities of ribosomal RNAs and tRNAs.
    Nagano K; Nagano N
    J Theor Biol; 2007 Apr; 245(4):644-68. PubMed ID: 17196221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is there a special function for U.G basepairs in ribosomal RNA?
    van Knippenberg PH; Formenoy LJ; Heus HA
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):14-7. PubMed ID: 2207138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A backward view from 16S rRNA to archaea to the universal tree of life to progenotes: reminiscences of Carl Woese.
    Garrett RA
    RNA Biol; 2014; 11(3):232-5. PubMed ID: 24607972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of 16S and 23S rRNA sequences of Listeria species.
    Sallen B; Rajoharison A; Desvarenne S; Quinn F; Mabilat C
    Int J Syst Bacteriol; 1996 Jul; 46(3):669-74. PubMed ID: 8782674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny.
    Leblond-Bourget N; Philippe H; Mangin I; Decaris B
    Int J Syst Bacteriol; 1996 Jan; 46(1):102-11. PubMed ID: 8573484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of a key tertiary interaction in the highly conserved GTPase center of large subunit ribosomal RNA.
    Ryan PC; Draper DE
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6308-12. PubMed ID: 2068110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis.
    Loughney K; Lund E; Dahlberg JE
    Nucleic Acids Res; 1982 Mar; 10(5):1607-24. PubMed ID: 6280153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.