These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7937116)

  • 41. Automatic RNA secondary structure determination with stochastic context-free grammars.
    Grate L
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():136-44. PubMed ID: 7584430
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Systematic deletion of rRNAs for investigating ribosome architecture and function.
    Kitahara K; Sato NS; Namba N; Yokota T; Tsujimura T; Suzuki T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):287-8. PubMed ID: 17150930
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative sequence analysis and oligonucleotide probe design based on 23S rRNA genes of Alphaproteobacteria from North Sea bacterioplankton.
    Peplies J; Glöckner FO; Amann R; Ludwig W
    Syst Appl Microbiol; 2004 Sep; 27(5):573-80. PubMed ID: 15490559
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach.
    Aakra A; Utåker JB; Nes IF
    Int J Syst Bacteriol; 1999 Jan; 49 Pt 1():123-30. PubMed ID: 10028253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics.
    Dewhirst FE; Shen Z; Scimeca MS; Stokes LN; Boumenna T; Chen T; Paster BJ; Fox JG
    J Bacteriol; 2005 Sep; 187(17):6106-18. PubMed ID: 16109952
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The complete mitochondrial genome of Vanessa indica and phylogenetic analyses of the family Nymphalidae.
    Lu Y; Liu N; Xu L; Fang J; Wang S
    Genes Genomics; 2018 Oct; 40(10):1011-1022. PubMed ID: 29949077
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of base identity and base pairing on the function of the alpha-sarcin loop of 23S rRNA.
    O'Connor M; Dahlberg AE
    Nucleic Acids Res; 1996 Jul; 24(14):2701-5. PubMed ID: 8758999
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The accuracy of ribosomal RNA comparative structure models.
    Gutell RR; Lee JC; Cannone JJ
    Curr Opin Struct Biol; 2002 Jun; 12(3):301-10. PubMed ID: 12127448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A theoretical study on the nucleotide changes under a definite functional constraint of forming stable base-pairs in the stem regions of ribosomal RNAs; its application to the phylogeny of eukaryotes.
    Otsuka J; Nakano T; Terai G
    J Theor Biol; 1997 Jan; 184(2):171-86. PubMed ID: 9059597
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics.
    Winker S; Woese CR
    Syst Appl Microbiol; 1991; 14(4):305-10. PubMed ID: 11540071
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria.
    Terefework Z; Nick G; Suomalainen S; Paulin L; Lindström K
    Int J Syst Bacteriol; 1998 Apr; 48 Pt 2():349-56. PubMed ID: 9731273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organization and expression of the 16S, 23S and 5S ribosomal RNA genes from the archaebacterium Thermoplasma acidophilum.
    Ree HK; Zimmermann RA
    Nucleic Acids Res; 1990 Aug; 18(15):4471-8. PubMed ID: 1697064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Periodic conformational changes in rRNA: monitoring the dynamics of translating ribosomes.
    Polacek N; Patzke S; Nierhaus KH; Barta A
    Mol Cell; 2000 Jul; 6(1):159-71. PubMed ID: 10949037
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advanced formulation of base pair changes in the stem regions of ribosomal RNAs; its application to mitochondrial rRNAs for resolving the phylogeny of animals.
    Otsuka J; Sugaya N
    J Theor Biol; 2003 Jun; 222(4):447-60. PubMed ID: 12781743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs.
    Konings DA; Gutell RR
    RNA; 1995 Aug; 1(6):559-74. PubMed ID: 7489516
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A protonated base pair participating in rRNA tertiary structural interactions.
    Kubarenko AV; Sergiev PV; Bogdanov AA; Brimacombe R; Dontsova OA
    Nucleic Acids Res; 2001 Dec; 29(24):5067-70. PubMed ID: 11812838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure detection through automated covariance search.
    Winker S; Overbeek R; Woese CR; Olsen GJ; Pfluger N
    Comput Appl Biosci; 1990 Oct; 6(4):365-71. PubMed ID: 2257498
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phylogenetic evidence for tertiary interactions in 16S-like ribosomal RNA.
    Haselman T; Camp DG; Fox GE
    Nucleic Acids Res; 1989 Mar; 17(6):2215-21. PubMed ID: 2468130
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating substitution rates in ribosomal RNA genes.
    Rzhetsky A
    Genetics; 1995 Oct; 141(2):771-83. PubMed ID: 8647409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High apparent rate of simultaneous compensatory base-pair substitutions in ribosomal RNA.
    Tillier ER; Collins RA
    Genetics; 1998 Apr; 148(4):1993-2002. PubMed ID: 9560412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.