These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 7937117)

  • 1. Recognition and cleavage of hairpin structures in nucleic acids by oligodeoxynucleotides.
    François JC; Thuong NT; Hélène C
    Nucleic Acids Res; 1994 Sep; 22(19):3943-50. PubMed ID: 7937117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds.
    François JC; Hélène C
    Biochemistry; 1995 Jan; 34(1):65-72. PubMed ID: 7819224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Artificial nucleases: specific cleavage of the double helix of DNA by oligonucleotides linked to copper-phenanthroline complex].
    François JC; Saison-Behmoaras T; Chassignol M; Thuong NT; Hélène C
    C R Acad Sci III; 1988; 307(20):849-54. PubMed ID: 2854494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of sequence-specific bifunctional nucleic acid ligands.
    Montenay-Garestier T; Hélène C; Thuong NT
    Ciba Found Symp; 1991; 158():147-57; discussion 204-12. PubMed ID: 1935419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate.
    François JC; Saison-Behmoaras T; Barbier C; Chassignol M; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9702-6. PubMed ID: 2557624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of hairpin-containing single-stranded DNA by oligonucleotides containing internal acridine derivatives.
    François JC; Hélène C
    Bioconjug Chem; 1999; 10(3):439-46. PubMed ID: 10346876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologous recognition and triplex formation promoted by RecA protein between duplex oligonucleotides and single-stranded DNA.
    Rao BJ; Chiu SK; Radding CM
    J Mol Biol; 1993 Jan; 229(2):328-43. PubMed ID: 8381491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-targeted cleavage of single- and double-stranded DNA by oligothymidylates covalently linked to 1,10-phenanthroline.
    François JC; Saison-Behmoaras T; Chassignol M; Thuong NT; Helene C
    J Biol Chem; 1989 Apr; 264(10):5891-8. PubMed ID: 2925640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong binding of single-stranded DNA by stem-loop oligonucleotides.
    D'Souza DJ; Kool ET
    J Biomol Struct Dyn; 1992 Aug; 10(1):141-52. PubMed ID: 1418737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Head-to-head bis-hairpin polyamide minor groove binders and their conjugates with triplex-forming oligonucleotides: studies of interaction with target double-stranded DNA.
    Halby L; Ryabinin VA; Sinyakov AN; Novopashina DS; Venyaminova AG; Grokhovsky SL; Surovaya AN; Gursky GV; Boutorine AS
    J Biomol Struct Dyn; 2007 Aug; 25(1):61-76. PubMed ID: 17676939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of bifunctional oligonucleotide intercalator conjugates as inhibitors of gene expression.
    Helene C; Thuong NT
    Nucleic Acids Symp Ser; 1991; (24):133-7. PubMed ID: 1668684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed study of sequence-specific DNA cleavage of triplex-forming oligonucleotides linked to 1,10-phenanthroline.
    Shimizu M; Inoue H; Ohtsuka E
    Biochemistry; 1994 Jan; 33(2):606-13. PubMed ID: 8286392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-specific recognition of the major groove of DNA by oligodeoxynucleotides via triple helix formation. Footprinting studies.
    François JC; Saison-Behmoaras T; Hélène C
    Nucleic Acids Res; 1988 Dec; 16(24):11431-40. PubMed ID: 3211742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplex-forming oligonucleotides trigger conformation changes of a target hairpin sequence.
    Brossalina E; Demchenko E; Demchenko Y; Vlassov V; Toulmé JJ
    Nucleic Acids Res; 1996 Sep; 24(17):3392-8. PubMed ID: 8811094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The binding of an antisense oligonucleotide to a hairpin structure via triplex formation inhibits chemical and biological reactions.
    Brossalina E; Pascolo E; Toulmé JJ
    Nucleic Acids Res; 1993 Dec; 21(24):5616-22. PubMed ID: 8284206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a DNA duplex that contains alpha-anomeric nucleotides and 3'-3' and 5'-5' phosphodiester linkages: coexistence of parallel and antiparallel DNA.
    Aramini JM; Kalisch BW; Pon RT; van de Sande JH; Germann MW
    Biochemistry; 1996 Jul; 35(29):9355-65. PubMed ID: 8755713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates.
    Sun JS; François JC; Montenay-Garestier T; Saison-Behmoaras T; Roig V; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9198-202. PubMed ID: 2594761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The affinity of an oligodeoxynucleotide-peptide conjugate for an RNA hairpin loop depends on stereochemistry at the DNA-peptide junction.
    Sahasrabudhe PV; Gmeiner WH
    J Biomol Struct Dyn; 1996 Feb; 13(4):585-91. PubMed ID: 8906879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNase H1 can catalyze RNA/DNA hybrid formation and cleavage with stable hairpin or duplex DNA oligomers.
    Li J; Wartell RM
    Biochemistry; 1998 Apr; 37(15):5154-61. PubMed ID: 9548746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of adjacent triplex-duplex domainsin DNA.
    Nam KH; Abhiraman S; Wartell RM
    Nucleic Acids Res; 1999 Feb; 27(3):859-65. PubMed ID: 9889284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.