These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7937160)

  • 1. Requirements for self-splicing of a group I intron from Physarum polycephalum.
    Rocheleau GA; Woodson SA
    Nucleic Acids Res; 1994 Oct; 22(20):4315-20. PubMed ID: 7937160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the self-splicing products of a mobile intron from the nuclear rDNA of Physarum polycephalum.
    Ruoff B; Johansen S; Vogt VM
    Nucleic Acids Res; 1992 Nov; 20(22):5899-906. PubMed ID: 1461722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced self-splicing of Physarum polycephalum intron 3 by a second group I intron.
    Rocheleau GA; Woodson SA
    RNA; 1995 Apr; 1(2):183-93. PubMed ID: 7585248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron.
    Emerick VL; Pan J; Woodson SA
    Biochemistry; 1996 Oct; 35(41):13469-77. PubMed ID: 8873616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chloroplast chlL gene of the green alga Chlorella vulgaris C-27 contains a self-splicing group I intron.
    Kapoor M; Wakasugi T; Yoshinaga K; Sugiura M
    Mol Gen Genet; 1996 Apr; 250(6):655-64. PubMed ID: 8628225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the self-splicing products of two complex Naegleria LSU rDNA group I introns containing homing endonuclease genes.
    Haugen P; De Jonckheere JF; Johansen S
    Eur J Biochem; 2002 Mar; 269(6):1641-9. PubMed ID: 11895434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro self-splicing reactions of the chloroplast group I intron Cr.LSU from Chlamydomonas reinhardtii and in vivo manipulation via gene-replacement.
    Thompson AJ; Herrin DL
    Nucleic Acids Res; 1991 Dec; 19(23):6611-8. PubMed ID: 1721704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.
    Dávila-Aponte JA; Huss VA; Sogin ML; Cech TR
    Nucleic Acids Res; 1991 Aug; 19(16):4429-36. PubMed ID: 1886767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron.
    Guo F; Cech TR
    RNA; 2002 May; 8(5):647-58. PubMed ID: 12022231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destabilizing effect of an rRNA stem-loop on an attenuator hairpin in the 5' exon of the Tetrahymena pre-rRNA.
    Cao Y; Woodson SA
    RNA; 1998 Aug; 4(8):901-14. PubMed ID: 9701282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic structure of two ras family genes in the slime mold Physarum polycephalum.
    Trzcińska-Danielewicz J; Kozlowski P; Gierdal K; Wiejak J; Jagielski A; Toczko K; Fronk J
    DNA Seq; 2002 Aug; 13(4):231-6. PubMed ID: 12487027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SURVEY AND SUMMARY: exon-intron organization of genes in the slime mold Physarum polycephalum.
    Trzcinska-Danielewicz J; Fronk J
    Nucleic Acids Res; 2000 Sep; 28(18):3411-6. PubMed ID: 10982858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GTP cyclohydrolase I mRNA: novel splice variants in the slime mould Physarum polycephalum and in human monocytes (THP-1) indicate conservation of mRNA processing.
    Golderer G; Werner ER; Heufler C; Strohmaier W; Gröbner P; Werner-Felmayer G
    Biochem J; 2001 Apr; 355(Pt 2):499-507. PubMed ID: 11284739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA.
    Zhang F; Ramsay ES; Woodson SA
    RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Close relationship between certain nuclear and mitochondrial introns. Implications for the mechanism of RNA splicing.
    Waring RB; Scazzocchio C; Brown TA; Davies RW
    J Mol Biol; 1983 Jul; 167(3):595-605. PubMed ID: 6876158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells.
    Hagen M; Cech TR
    EMBO J; 1999 Nov; 18(22):6491-500. PubMed ID: 10562561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleolar introns from Physarum flavicomum contain insertion elements that may explain how mobile group I introns gained their open reading frames.
    Vader A; Naess J; Haugli K; Haugli F; Johansen S
    Nucleic Acids Res; 1994 Nov; 22(22):4553-9. PubMed ID: 7984404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones.
    Coetzee T; Herschlag D; Belfort M
    Genes Dev; 1994 Jul; 8(13):1575-88. PubMed ID: 7958841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational switches involved in orchestrating the successive steps of group I RNA splicing.
    Golden BL; Cech TR
    Biochemistry; 1996 Mar; 35(12):3754-63. PubMed ID: 8619996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.