These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Hostinová E; Solovicová A; Dvorský R; Gasperík J Arch Biochem Biophys; 2003 Mar; 411(2):189-95. PubMed ID: 12623067 [TBL] [Abstract][Full Text] [Related]
5. Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Chen L; Coutinho PM; Nikolov Z; Ford C Protein Eng; 1995 Oct; 8(10):1049-55. PubMed ID: 8771186 [TBL] [Abstract][Full Text] [Related]
6. Glucoamylase: structure/function relationships, and protein engineering. Sauer J; Sigurskjold BW; Christensen U; Frandsen TP; Mirgorodskaya E; Harrison M; Roepstorff P; Svensson B Biochim Biophys Acta; 2000 Dec; 1543(2):275-293. PubMed ID: 11150611 [TBL] [Abstract][Full Text] [Related]
7. Effect of amino acid deletions in the O-glycosylated region of Aspergillus awamori glucoamylase. Libby CB; Cornett CA; Reilly PJ; Ford C Protein Eng; 1994 Sep; 7(9):1109-14. PubMed ID: 7831281 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided analysis of spatial structure of some hydrolytic enzymes. Artyukhov VG; Kovaleva TA; Kozhokina OM; Bitutskaya LA; Dronov RV; Trofimova OD Biochemistry (Mosc); 2005 Oct; 70(10):1086-94. PubMed ID: 16271023 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Tung JY; Chang MD; Chou WI; Liu YY; Yeh YH; Chang FY; Lin SC; Qiu ZL; Sun YJ Biochem J; 2008 Nov; 416(1):27-36. PubMed ID: 18588504 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Goto M; Semimaru T; Furukawa K; Hayashida S Appl Environ Microbiol; 1994 Nov; 60(11):3926-30. PubMed ID: 7993082 [TBL] [Abstract][Full Text] [Related]
11. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori. Natarajan S; Sierks MR Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145 [TBL] [Abstract][Full Text] [Related]
12. The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Chou WI; Pai TW; Liu SH; Hsiung BK; Chang MD Biochem J; 2006 Jun; 396(3):469-77. PubMed ID: 16509822 [TBL] [Abstract][Full Text] [Related]
14. Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Semimaru T; Goto M; Furukawa K; Hayashida S Appl Environ Microbiol; 1995 Aug; 61(8):2885-90. PubMed ID: 7487021 [TBL] [Abstract][Full Text] [Related]
15. 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Jacks AJ; Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Eur J Biochem; 1995 Oct; 233(2):568-78. PubMed ID: 7588803 [TBL] [Abstract][Full Text] [Related]
16. Structural analysis of glucoamylase encoded by the STA1 gene of Saccharomyces cerevisiae (var. diastaticus). Adam AC; Latorre-García L; Polaina J Yeast; 2004 Apr; 21(5):379-88. PubMed ID: 15116339 [TBL] [Abstract][Full Text] [Related]
17. Modulation of biorecognition of glucoamylases with Concanavalin A by glycosylation via recombinant expression. Mislovicová D; Masárová J; Hostinová E; Gasperík J; Gemeiner P Int J Biol Macromol; 2006 Nov; 39(4-5):286-90. PubMed ID: 16797066 [TBL] [Abstract][Full Text] [Related]