These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 7937705)
21. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. Sevcík J; Hostinová E; Solovicová A; Gasperík J; Dauter Z; Wilson KS FEBS J; 2006 May; 273(10):2161-71. PubMed ID: 16649993 [TBL] [Abstract][Full Text] [Related]
22. Crystal structure and evolution of a prokaryotic glucoamylase. Aleshin AE; Feng PH; Honzatko RB; Reilly PJ J Mol Biol; 2003 Mar; 327(1):61-73. PubMed ID: 12614608 [TBL] [Abstract][Full Text] [Related]
23. Structural and functional analysis of hybrid enzymes generated by domain shuffling between Saccharomyces cerevisiae (var. diastaticus) Sta1 glucoamylase and Saccharomycopsis fibuligera Bgl1 β-glucosidase. Marín-Navarro J; Gurgu L; Alamar S; Polaina J Appl Microbiol Biotechnol; 2011 Jan; 89(1):121-30. PubMed ID: 20821204 [TBL] [Abstract][Full Text] [Related]
24. Crystal structures of starch binding domain from Rhizopus oryzae glucoamylase in complex with isomaltooligosaccharide: insights into polysaccharide binding mechanism of CBM21 family. Chu CH; Li KM; Lin SW; Chang MD; Jiang TY; Sun YJ Proteins; 2014 Jun; 82(6):1079-85. PubMed ID: 24108499 [TBL] [Abstract][Full Text] [Related]
25. Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases. Kotaka A; Sahara H; Hata Y; Abe Y; Kondo A; Kato-Murai M; Kuroda K; Ueda M Biosci Biotechnol Biochem; 2008 May; 72(5):1376-9. PubMed ID: 18460787 [TBL] [Abstract][Full Text] [Related]
26. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Sigurskjold BW; Svensson B; Williamson G; Driguez H Eur J Biochem; 1994 Oct; 225(1):133-41. PubMed ID: 7925430 [TBL] [Abstract][Full Text] [Related]
27. Role of the linker region in the expression of Rhizopus oryzae glucoamylase. Lin SC; Liu WT; Liu SH; Chou WI; Hsiung BK; Lin IP; Sheu CC; Dah-Tsyr Chang M BMC Biochem; 2007 Jun; 8():9. PubMed ID: 17593302 [TBL] [Abstract][Full Text] [Related]
28. Molecular dynamics simulations of the unfolding mechanism of the catalytic domain from Aspergillus awamori var. X100 glucoamylase. Liu HL; Wang WC; Hsu CM J Biomol Struct Dyn; 2003 Feb; 20(4):567-74. PubMed ID: 12529155 [TBL] [Abstract][Full Text] [Related]
29. The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae. Hata Y; Kitamoto K; Gomi K; Kumagai C; Tamura G; Hara S Agric Biol Chem; 1991 Apr; 55(4):941-9. PubMed ID: 1368680 [TBL] [Abstract][Full Text] [Related]
30. Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. Latorre-García L; Adam AC; Manzanares P; Polaina J J Biotechnol; 2005 Aug; 118(2):167-76. PubMed ID: 15963591 [TBL] [Abstract][Full Text] [Related]
31. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Chen HM; Ford C; Reilly PJ Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):275-81. PubMed ID: 8037681 [TBL] [Abstract][Full Text] [Related]
32. Predicted unfolding order of the 13 alpha-helices in the catalytic domain of glucoamylase from Aspergillus awamori var. X100 by molecular dynamics simulations. Liu HL; Wang WC Biotechnol Prog; 2003; 19(5):1583-90. PubMed ID: 14524723 [TBL] [Abstract][Full Text] [Related]
33. Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain. Le Gal-Coëffet MF; Jacks AJ; Sorimachi K; Williamson MP; Williamson G; Archer DB Eur J Biochem; 1995 Oct; 233(2):561-7. PubMed ID: 7588802 [TBL] [Abstract][Full Text] [Related]
34. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris. Mertens JA; Braker JD; Jordan DB Appl Biochem Biotechnol; 2010 Dec; 162(8):2197-213. PubMed ID: 20549574 [TBL] [Abstract][Full Text] [Related]
35. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Sauer J; Christensen T; Frandsen TP; Mirgorodskaya E; McGuire KA; Driguez H; Roepstorff P; Sigurskjold BW; Svensson B Biochemistry; 2001 Aug; 40(31):9336-46. PubMed ID: 11478902 [TBL] [Abstract][Full Text] [Related]
36. Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution. Aleshin A; Golubev A; Firsov LM; Honzatko RB J Biol Chem; 1992 Sep; 267(27):19291-8. PubMed ID: 1527049 [TBL] [Abstract][Full Text] [Related]
37. Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Harris EM; Aleshin AE; Firsov LM; Honzatko RB Biochemistry; 1993 Feb; 32(6):1618-26. PubMed ID: 8431441 [TBL] [Abstract][Full Text] [Related]
38. Thermosensitive mutants of Aspergillus awamori glucoamylase by random mutagenesis: inactivation kinetics and structural interpretation. Flory N; Gorman M; Coutinho PM; Ford C; Reilly PJ Protein Eng; 1994 Aug; 7(8):1005-12. PubMed ID: 7809026 [TBL] [Abstract][Full Text] [Related]
39. Functional roles of the invariant aspartic acid 55, tyrosine 306, and aspartic acid 309 in glucoamylase from Aspergillus awamori studied by mutagenesis. Sierks MR; Svensson B Biochemistry; 1993 Feb; 32(4):1113-7. PubMed ID: 8424940 [TBL] [Abstract][Full Text] [Related]
40. Mutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49-->Trp, Tyr116-->Trp, Tyr175-->Phe, Arg241-->Lys, Ser411-->Ala and Ser411-->Gly. Fang TY; Coutinho PM; Reilly PJ; Ford C Protein Eng; 1998 Feb; 11(2):119-26. PubMed ID: 9605546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]