BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7937735)

  • 1. Spatial optimization of electrostatic interactions between the ionized groups in globular proteins.
    Spassov VZ; Atanasov BP
    Proteins; 1994 Jul; 19(3):222-9. PubMed ID: 7937735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the electrostatic interactions in proteins of different functional and folding type.
    Spassov VZ; Karshikoff AD; Ladenstein R
    Protein Sci; 1994 Sep; 3(9):1556-69. PubMed ID: 7833815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of protein crystals by electrostatic interactions as revealed by a numerical approach.
    Takahashi T; Endo S; Nagayama K
    J Mol Biol; 1993 Nov; 234(2):421-32. PubMed ID: 7693951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins.
    Spassov VZ; Ladenstein R; Karshikoff AD
    Protein Sci; 1997 Jun; 6(6):1190-6. PubMed ID: 9194179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific ion effects in solutions of globular proteins: comparison between analytical models and simulation.
    Boström M; Tavares FW; Bratko D; Ninham BW
    J Phys Chem B; 2005 Dec; 109(51):24489-94. PubMed ID: 16375452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model.
    Dahirel V; Jardat M; Dufrêche JF; Turq P
    J Chem Phys; 2007 Sep; 127(9):095101. PubMed ID: 17824765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combined simulation approach of atomistic and continuum models for the thermodynamics of lysozyme crystals.
    Chang J; Lenhoff AM; Sandler SI
    J Phys Chem B; 2005 Oct; 109(41):19507-15. PubMed ID: 16853520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The frequency of ion-pair substructures in proteins is quantitatively related to electrostatic potential: a statistical model for nonbonded interactions.
    Bryant SH; Lawrence CE
    Proteins; 1991; 9(2):108-19. PubMed ID: 2008431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computer model to dynamically simulate protein folding: studies with crambin.
    Wilson C; Doniach S
    Proteins; 1989; 6(2):193-209. PubMed ID: 2622905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic interactions of charged dipolar proteins in reverse micelles.
    Piñero J; Bhuiyan LB; Bratko D
    J Chem Phys; 2004 Jun; 120(24):11941-7. PubMed ID: 15268229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relation between native geometry and conformational plasticity.
    Faísca PF; Gomes CM
    Biophys Chem; 2008 Dec; 138(3):99-106. PubMed ID: 18823691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the phase behavior of an embedded charge protein model through molecular simulation.
    Rosch TW; Errington JR
    J Phys Chem B; 2007 Nov; 111(43):12591-8. PubMed ID: 17929863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between denaturant- and temperature-induced unfolding pathways of protein: a lattice Monte Carlo simulation.
    Choi HS; Huh J; Jo WH
    Biomacromolecules; 2004; 5(6):2289-96. PubMed ID: 15530044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational transition free energy profiles of an adsorbed, lattice model protein by multicanonical Monte Carlo simulation.
    Castells V; Van Tassel PR
    J Chem Phys; 2005 Feb; 122(8):84707. PubMed ID: 15836077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.