These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 7937967)

  • 21. Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus.
    Otzen DE; Fersht AR
    Biochemistry; 1998 Jun; 37(22):8139-46. PubMed ID: 9609709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The folding pathway of a protein at high resolution from microseconds to seconds.
    Nölting B; Golbik R; Neira JL; Soler-Gonzalez AS; Schreiber G; Fersht AR
    Proc Natl Acad Sci U S A; 1997 Feb; 94(3):826-30. PubMed ID: 9023341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopic characterization of the growing polypeptide chain of the barley chymotrypsin inhibitor-2.
    de Prat Gay G
    Arch Biochem Biophys; 1996 Nov; 335(1):1-7. PubMed ID: 8914828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition.
    Jackson SE; Fersht AR
    Biochemistry; 1991 Oct; 30(43):10428-35. PubMed ID: 1931967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational pathway of the polypeptide chain of chymotrypsin inhibitor-2 growing from its N terminus in vitro. Parallels with the protein folding pathway.
    de Prat Gay G; Ruiz-Sanz J; Neira JL; Corrales FJ; Otzen DE; Ladurner AG; Fersht AR
    J Mol Biol; 1995 Dec; 254(5):968-79. PubMed ID: 7500364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct comparison of experimental and calculated folding free energies for hydrophobic deletion mutants of chymotrypsin inhibitor 2: free energy perturbation calculations using transition and denatured states from molecular dynamics simulations of unfolding.
    Pan Y; Daggett V
    Biochemistry; 2001 Mar; 40(9):2723-31. PubMed ID: 11258883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structure of the major transition state for folding of an FF domain from experiment and simulation.
    Jemth P; Day R; Gianni S; Khan F; Allen M; Daggett V; Fersht AR
    J Mol Biol; 2005 Jul; 350(2):363-78. PubMed ID: 15935381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strain in the folding nucleus of chymotrypsin inhibitor 2.
    Ladurner AG; Itzhaki LS; Fersht AR
    Fold Des; 1997; 2(6):363-8. PubMed ID: 9427010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Negative activation enthalpies in the kinetics of protein folding.
    Oliveberg M; Tan YJ; Fersht AR
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8926-9. PubMed ID: 7568045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The folding pathway of barnase: the rate-limiting transition state and a hidden intermediate under native conditions.
    Vu ND; Feng H; Bai Y
    Biochemistry; 2004 Mar; 43(12):3346-56. PubMed ID: 15035606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of protein folding.
    Nölting B; Andert K
    Proteins; 2000 Nov; 41(3):288-98. PubMed ID: 11025541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields.
    Whitford PC; Noel JK; Gosavi S; Schug A; Sanbonmatsu KY; Onuchic JN
    Proteins; 2009 May; 75(2):430-41. PubMed ID: 18837035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulation of the unfolding of barnase: characterization of the major intermediate.
    Li A; Daggett V
    J Mol Biol; 1998 Jan; 275(4):677-94. PubMed ID: 9466940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of an anomalously accelerating substitution in the folding of a prototypical two-state protein.
    Lawrence C; Kuge J; Ahmad K; Plaxco KW
    J Mol Biol; 2010 Oct; 403(3):446-58. PubMed ID: 20816985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Following co-operative formation of secondary and tertiary structure in a single protein module.
    Neira JL; Itzhaki LS; Ladurner AG; Davis B; de Prat Gay G; Fersht AR
    J Mol Biol; 1997 Apr; 268(1):185-97. PubMed ID: 9149151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure.
    Serrano L; Matouschek A; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):805-18. PubMed ID: 1569558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational analysis of the N-capping box of the alpha-helix of chymotrypsin inhibitor 2.
    elMasry NF; Fersht AR
    Protein Eng; 1994 Jun; 7(6):777-82. PubMed ID: 7937708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2.
    Lopez-Hernandez E; Serrano L
    Fold Des; 1995; 1(1):43-55. PubMed ID: 9162138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding.
    Arcus VL; Vuilleumier S; Freund SM; Bycroft M; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):305-21. PubMed ID: 7490750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.