These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 7938497)
1. [Isolation and characterization of Azotobacter sp. for the production of poly-beta-hydroxyalkanoates]. Quagliano JC; Alegre P; Miyazaki SS Rev Argent Microbiol; 1994; 26(1):21-7. PubMed ID: 7938497 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of poly-beta-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source. Silva JA; Tobella LM; Becerra J; Godoy F; Martínez MA J Biosci Bioeng; 2007 Jun; 103(6):542-6. PubMed ID: 17630126 [TBL] [Abstract][Full Text] [Related]
3. Microbial fixation of nitrogen in the presence of lanthanum sulphate. Ranganayaki S; Bahadur K; Mohan C Z Allg Mikrobiol; 1981; 21(4):329-32. PubMed ID: 7293243 [TBL] [Abstract][Full Text] [Related]
4. Utilization of some phenolic compounds by Azotobacter chroococcum and their effect on growth and nitrogenase activity. Abd-Alla MH Microbiologia; 1994 Sep; 10(3):273-8. PubMed ID: 7873103 [TBL] [Abstract][Full Text] [Related]
5. Thermoresistance of azotobacter vinelandii ATCC 12837 in defined and dialysed soil media: filtrable forms. Gonzalez-Lopez J; Bravo-Mancheño V; Ramos-Cormenzana A Ann Microbiol (Paris); 1982; 133(2):317-24. PubMed ID: 7149528 [TBL] [Abstract][Full Text] [Related]
6. Growth-associated production and characterization of poly (3-hydroxybutyric acid) of Azotobacter beijerinckii DAR-102. Manna A; Paul AK Indian J Exp Biol; 2003 Feb; 41(2):129-34. PubMed ID: 15255604 [TBL] [Abstract][Full Text] [Related]
7. The effect of some herbicides on Azotobacter chroococcum. Wegrzyn T Acta Microbiol Pol B; 1971; 3(3):131-4. PubMed ID: 4940210 [No Abstract] [Full Text] [Related]
8. Effect of sodium molybdate on microbial fixation of nitrogen. Ranganayaki S; Mohan C Z Allg Mikrobiol; 1981; 21(8):607-10. PubMed ID: 7331378 [TBL] [Abstract][Full Text] [Related]
9. PGP potential, abiotic stress tolerance and antifungal activity of Azotobacter strains isolated from paddy soils. Chennappa G; Naik MK; Adkar-Purushothama CR; Amaresh YS; Sreenivasa MY Indian J Exp Biol; 2016 May; 54(5):322-31. PubMed ID: 27319051 [TBL] [Abstract][Full Text] [Related]
10. Growth of Azotobacter chroococcum in chemically defined media containing p-hydroxybenzoic acid and protocatechuic acid. Juarez B; Martinez-Toledo MV; Gonzalez-Lopez J Chemosphere; 2005 Jun; 59(9):1361-5. PubMed ID: 15857648 [TBL] [Abstract][Full Text] [Related]
11. Accumulation of poly[(R)-3-hydroxyalkanoates] in Enterobacter cloacae SU-1 during growth with two different carbon sources in batch culture. Samrot AV; Avinesh RB; Sukeetha SD; Senthilkumar P Appl Biochem Biotechnol; 2011 Jan; 163(1):195-203. PubMed ID: 20632129 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Kizilkaya R J Environ Biol; 2009 Jan; 30(1):73-82. PubMed ID: 20112866 [TBL] [Abstract][Full Text] [Related]
13. Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source. García-Esquivel G; Calva-Calva G; Ferrera-Cerrato R; Fernández-Linares LC; Vázquez RR; Esparza-García FJ Arch Microbiol; 2009 Mar; 191(3):275-81. PubMed ID: 19018516 [TBL] [Abstract][Full Text] [Related]
14. Intracellular degradation of poly(3-hydroxybutyric acid) accumulated by Azotobacter chroococcum MAL-201. Saha SP; Paul AK Roum Arch Microbiol Immunol; 2005; 64(1-4):50-6. PubMed ID: 17405315 [TBL] [Abstract][Full Text] [Related]
15. [Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B]. Myshkina VL; Nikolaeva DA; Makhina TK; Bonartsev AP; Bonartseva GA Prikl Biokhim Mikrobiol; 2008; 44(5):533-8. PubMed ID: 18822772 [TBL] [Abstract][Full Text] [Related]
16. Poly-β-hydroxybutyrate accumulation in bacterial consortia from different environments. Carpa R; Butiuc-Keul A; Lupan I; Barbu-Tudoran L; Muntean V; Dobrotă C Can J Microbiol; 2012 May; 58(5):660-7. PubMed ID: 22540340 [TBL] [Abstract][Full Text] [Related]
17. Isolation of an endosulfan-degrading bacterium from a coffee farm soil: persistence and inhibitory effect on its biological functions. Castillo JM; Casas J; Romero E Sci Total Environ; 2011 Dec; 412-413():20-7. PubMed ID: 22033355 [TBL] [Abstract][Full Text] [Related]
18. [Tolerance to sodium chloride of Azotobacter strains isolated from the Atlantic coastline soils]. Fustec-Mathon E; Neuville D; Daste P Ann Inst Pasteur (Paris); 1970 Oct; 119(4):498-511. PubMed ID: 5478268 [No Abstract] [Full Text] [Related]
19. Novel route of tannic acid biotransformation and their effect on major biopolymer synthesis in Azotobacter sp. SSB81. Gauri SS; Mandal SM; Atta S; Dey S; Pati BR J Appl Microbiol; 2013 Jan; 114(1):84-95. PubMed ID: 23035941 [TBL] [Abstract][Full Text] [Related]
20. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Ahmad F; Ahmad I; Khan MS Microbiol Res; 2008; 163(2):173-81. PubMed ID: 16735107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]