These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 7939717)
21. Mutations in the Drosophila gene bullwinkle cause the formation of abnormal eggshell structures and bicaudal embryos. Rittenhouse KR; Berg CA Development; 1995 Sep; 121(9):3023-33. PubMed ID: 7555728 [TBL] [Abstract][Full Text] [Related]
22. The centrosome in Drosophila oocyte development. Megraw TL; Kaufman TC Curr Top Dev Biol; 2000; 49():385-407. PubMed ID: 11005029 [TBL] [Abstract][Full Text] [Related]
23. Drosophila javelin-like encodes a novel microtubule-associated protein and is required for mRNA localization during oogenesis. Dubin-Bar D; Bitan A; Bakhrat A; Amsalem S; Abdu U Development; 2011 Nov; 138(21):4661-71. PubMed ID: 21989913 [TBL] [Abstract][Full Text] [Related]
24. The molecular motor dynein is involved in targeting swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Schnorrer F; Bohmann K; Nüsslein-Volhard C Nat Cell Biol; 2000 Apr; 2(4):185-90. PubMed ID: 10783235 [TBL] [Abstract][Full Text] [Related]
25. In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cha BJ; Koppetsch BS; Theurkauf WE Cell; 2001 Jul; 106(1):35-46. PubMed ID: 11461700 [TBL] [Abstract][Full Text] [Related]
26. Staufen protein associates with the 3'UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Ferrandon D; Elphick L; Nüsslein-Volhard C; St Johnston D Cell; 1994 Dec; 79(7):1221-32. PubMed ID: 8001156 [TBL] [Abstract][Full Text] [Related]
27. A novel mutant phenotype implicates dicephalic in cyst formation in the Drosophila ovary. McCaffrey R; St Johnston D; González-Reyes A Dev Dyn; 2006 Apr; 235(4):908-17. PubMed ID: 16258921 [TBL] [Abstract][Full Text] [Related]
28. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Roth S; Neuman-Silberberg FS; Barcelo G; Schüpbach T Cell; 1995 Jun; 81(6):967-78. PubMed ID: 7540118 [TBL] [Abstract][Full Text] [Related]
29. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Theurkauf WE; Hazelrigg TI Development; 1998 Sep; 125(18):3655-66. PubMed ID: 9716531 [TBL] [Abstract][Full Text] [Related]
30. Growing microtubules push the oocyte nucleus to polarize the Drosophila dorsal-ventral axis. Zhao T; Graham OS; Raposo A; St Johnston D Science; 2012 May; 336(6084):999-1003. PubMed ID: 22499806 [TBL] [Abstract][Full Text] [Related]
31. The establishment and interpretation of transcription factor gradients in the Drosophila embryo. Courey AJ; Huang JD Biochim Biophys Acta; 1995 Mar; 1261(1):1-18. PubMed ID: 7893745 [No Abstract] [Full Text] [Related]
32. Clathrin heavy chain plays multiple roles in polarizing the Drosophila oocyte downstream of Bic-D. Vazquez-Pianzola P; Adam J; Haldemann D; Hain D; Urlaub H; Suter B Development; 2014 May; 141(9):1915-26. PubMed ID: 24718986 [TBL] [Abstract][Full Text] [Related]
33. Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte. MacDougall N; Lad Y; Wilkie GS; Francis-Lang H; Sullivan W; Davis I Development; 2001 Mar; 128(5):665-73. PubMed ID: 11171392 [TBL] [Abstract][Full Text] [Related]
34. Lethal(2)giant larvae is required in the follicle cells for formation of the initial AP asymmetry and the oocyte polarity during Drosophila oogenesis. Li Q; Xin T; Chen W; Zhu M; Li M Cell Res; 2008 Mar; 18(3):372-84. PubMed ID: 18268543 [TBL] [Abstract][Full Text] [Related]
35. Par-1 and Tau regulate the anterior-posterior gradient of microtubules in Drosophila oocytes. Tian AG; Deng WM Dev Biol; 2009 Mar; 327(2):458-64. PubMed ID: 19166830 [TBL] [Abstract][Full Text] [Related]
36. The organization of the antero-posterior axis. Klingler M Semin Cell Biol; 1990 Jun; 1(3):151-60. PubMed ID: 2103886 [TBL] [Abstract][Full Text] [Related]
37. Role of Adducin-like (hu-li tai shao) mRNA and protein localization in regulating cytoskeletal structure and function during Drosophila Oogenesis and early embryogenesis. Zaccai M; Lipshitz HD Dev Genet; 1996; 19(3):249-57. PubMed ID: 8952067 [TBL] [Abstract][Full Text] [Related]
38. Symmetry breaking during Drosophila oogenesis. Roth S; Lynch JA Cold Spring Harb Perspect Biol; 2009 Aug; 1(2):a001891. PubMed ID: 20066085 [TBL] [Abstract][Full Text] [Related]
39. The Drosophila microtubule-associated protein mini spindles is required for cytoplasmic microtubules in oogenesis. Moon W; Hazelrigg T Curr Biol; 2004 Nov; 14(21):1957-61. PubMed ID: 15530399 [TBL] [Abstract][Full Text] [Related]
40. Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Ruohola H; Bremer KA; Baker D; Swedlow JR; Jan LY; Jan YN Cell; 1991 Aug; 66(3):433-49. PubMed ID: 1907889 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]