These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 794063)
21. Leucine accumulation by isoleucine revertants of Serratia marcescens resistant to -aminobutyric acid: lack of both feedback inhibition and repression. Kisumi M; Komatsubara S; Chibata I J Biochem; 1973 Jan; 73(1):107-15. PubMed ID: 4570366 [No Abstract] [Full Text] [Related]
22. Properties of some norvaline-resistant mutants of Bacillus subtilis. Holtzclaw WD; Chapman LF J Gen Microbiol; 1975 Jun; 88(2):289-94. PubMed ID: 807681 [TBL] [Abstract][Full Text] [Related]
23. Properties of isoleucine hydroxamate-resistant mutants of Serratia marcescens. Kisumi M; Komatsubara S; Sugiura M; Chibata I J Gen Microbiol; 1971 Dec; 69(3):291-7. PubMed ID: 4947311 [No Abstract] [Full Text] [Related]
24. Isoleucine accumulation by regulatory mutants of Serratia marcescens: lack of both feedback inhibition and repression. Kisumi M; Komatsubara S; Sugiura M; Chibata I J Bacteriol; 1972 May; 110(2):761-3. PubMed ID: 4553844 [TBL] [Abstract][Full Text] [Related]
25. alpha-Isopropylmalate synthase from Alcaligenes eutrophus H 16. II. Substrate specificity and kinetics. Wiegel J; Schlegel HG Arch Microbiol; 1977 Apr; 112(3):247-54. PubMed ID: 871227 [TBL] [Abstract][Full Text] [Related]
26. Characterization of two 2-isopropylmalate synthase homologs from Thermus thermophilus HB27. Yoshida A; Kosono S; Nishiyama M Biochem Biophys Res Commun; 2018 Jun; 501(2):465-470. PubMed ID: 29738774 [TBL] [Abstract][Full Text] [Related]
27. Transductional construction of an isoleucine-producing strain of Serratia marcescens. Komatsubara S; Kisumi M; Chibata I J Gen Microbiol; 1980 Jul; 119(1):51-61. PubMed ID: 6774054 [TBL] [Abstract][Full Text] [Related]
28. Trace element associated reduction of norleucine and norvaline accumulation during oxygen limitation in a recombinant Escherichia coli fermentation. Biermann M; Linnemann J; Knüpfer U; Vollstädt S; Bardl B; Seidel G; Horn U Microb Cell Fact; 2013 Nov; 12():116. PubMed ID: 24261588 [TBL] [Abstract][Full Text] [Related]
29. Derepression of isoleucine-valine biosynthetic enzymes and extracellular isoleucine accumulation in Serratia marcescens. Kisumi M; Komatsubara S; Chibata I J Biochem; 1972 Nov; 72(5):1065-73. PubMed ID: 4567661 [No Abstract] [Full Text] [Related]
30. [Metabolic control of branched-chain amino acid biosynthesis--basis reviewed from fermentative field (author's transl)]. Kisumi M; Komatsubara S; Chibata I Tanpakushitsu Kakusan Koso; 1973 Dec; 18(12):1127-37. PubMed ID: 4587437 [No Abstract] [Full Text] [Related]
31. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. Xu H; Zhang Y; Guo X; Ren S; Staempfli AA; Chiao J; Jiang W; Zhao G J Bacteriol; 2004 Aug; 186(16):5400-9. PubMed ID: 15292141 [TBL] [Abstract][Full Text] [Related]
32. Construction of an L-arginine-producing mutant in Serratia marcescens. Use of the wide substrate specificity of acetylornithinase. Kisumi M; Takagi T; Chibata I J Biochem; 1978 Oct; 84(4):881-90. PubMed ID: 361732 [TBL] [Abstract][Full Text] [Related]
33. Isoleucine hydroxamate, an isoleucine antagonist. Kisumi M; Komatsubara S; Sugiura M; Chibata I J Bacteriol; 1971 Sep; 107(3):741-5. PubMed ID: 4937785 [TBL] [Abstract][Full Text] [Related]
34. Modifying the determinants of α-ketoacid substrate selectivity in mycobacterium tuberculosis α-isopropylmalate synthase. Hunter MF; Parker EJ FEBS Lett; 2014 May; 588(9):1603-7. PubMed ID: 24613923 [TBL] [Abstract][Full Text] [Related]
35. Norvaline and norleucine may have been more abundant protein components during early stages of cell evolution. Alvarez-Carreño C; Becerra A; Lazcano A Orig Life Evol Biosph; 2013 Oct; 43(4-5):363-75. PubMed ID: 24013929 [TBL] [Abstract][Full Text] [Related]
36. End-product control of enzymes of branched-chain amino acid biosynthesis in Streptomyces coelicolor. Potter CA; Baumberg S Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():1945-52. PubMed ID: 8760908 [TBL] [Abstract][Full Text] [Related]
37. Control of misincorporation of de novo synthesized norleucine into recombinant interleukin-2 in E. coli. Tsai LB; Lu HS; Kenney WC; Curless CC; Klein ML; Lai PH; Fenton DM; Altrock BW; Mann MB Biochem Biophys Res Commun; 1988 Oct; 156(2):733-9. PubMed ID: 3056402 [TBL] [Abstract][Full Text] [Related]
38. Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branchpoint step in the biosynthesis of leucine. de Kraker JW; Luck K; Textor S; Tokuhisa JG; Gershenzon J Plant Physiol; 2007 Feb; 143(2):970-86. PubMed ID: 17189332 [TBL] [Abstract][Full Text] [Related]
39. Purification and characterization of the valine sensitive acetolactate synthase from Serratia marcescens ATCC 25419. Yang JH; Kim SS Biochim Biophys Acta; 1993 Jun; 1157(2):178-84. PubMed ID: 8507653 [TBL] [Abstract][Full Text] [Related]
40. Conversion of ammonia or urea into essential amino acids, L-leucine, L-valine, and L-isoleucine, using artificial cells containing an immobilized multienzyme system and dextran-NAD+. 2. Yeast alcohol dehydrogenase for coenzyme recycling. Gu KF; Chang TM Biotechnol Appl Biochem; 1990 Jun; 12(3):227-36. PubMed ID: 1694439 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]