These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 794063)
41. An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae. Dickinson JR; Harrison SJ; Dickinson JA; Hewlins MJ J Biol Chem; 2000 Apr; 275(15):10937-42. PubMed ID: 10753893 [TBL] [Abstract][Full Text] [Related]
43. Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium. Primerano DA; Burns RO J Bacteriol; 1982 Jun; 150(3):1202-11. PubMed ID: 7042686 [TBL] [Abstract][Full Text] [Related]
44. Alpha-Isopropylmalate synthase from Alcaligenes eutrophus H 16 I. Purification and general properties. Wiegel J; Schlegel HG Arch Microbiol; 1977 Apr; 112(3):239-46. PubMed ID: 16576 [TBL] [Abstract][Full Text] [Related]
45. Threonine production by regulatory mutants of Serratia marcescens. Komatsubara S; Kisumi M; Murata K; Chibata I Appl Environ Microbiol; 1978 May; 35(5):834-40. PubMed ID: 350154 [TBL] [Abstract][Full Text] [Related]
46. Binding of alpha-ketoisovalerate to alpha-isopropylmalate synthase. Half-of-the-sites and all-of-the-sites availability. Teng-Leary E; Kohlhaw GB Biochim Biophys Acta; 1975 Nov; 410(1):210-9. PubMed ID: 1103972 [TBL] [Abstract][Full Text] [Related]
47. Construction and characterization of Salmonella typhimurium strains that accumulate and excrete alpha- and beta-isopropylmalate. Fultz PN; Choung KK; Kemper J J Bacteriol; 1980 May; 142(2):513-20. PubMed ID: 6991477 [TBL] [Abstract][Full Text] [Related]
48. Removal of the C-terminal regulatory domain of α-isopropylmalate synthase disrupts functional substrate binding. Huisman FH; Koon N; Bulloch EM; Baker HM; Baker EN; Squire CJ; Parker EJ Biochemistry; 2012 Mar; 51(11):2289-97. PubMed ID: 22352945 [TBL] [Abstract][Full Text] [Related]
49. Amino-acid substitutions at the domain interface affect substrate and allosteric inhibitor binding in α-isopropylmalate synthase from Mycobacterium tuberculosis. Huisman FH; Squire CJ; Parker EJ Biochem Biophys Res Commun; 2013 Apr; 433(2):249-54. PubMed ID: 23500460 [TBL] [Abstract][Full Text] [Related]
50. A comprehensive survey on isoleucine biosynthesis pathways in seven epidemic Leptospira interrogans reference strains of China. Zou Y; Guo X; Picardeau M; Xu H; Zhao G FEMS Microbiol Lett; 2007 Apr; 269(1):90-6. PubMed ID: 17227461 [TBL] [Abstract][Full Text] [Related]
51. Properties of crystalline leucine dehydrogenase from Bacillus sphaericus. Ohshima T; Misono H; Soda K J Biol Chem; 1978 Aug; 253(16):5719-25. PubMed ID: 670223 [TBL] [Abstract][Full Text] [Related]
52. Subdomain II of α-isopropylmalate synthase is essential for activity: inferring a mechanism of feedback inhibition. Zhang Z; Wu J; Lin W; Wang J; Yan H; Zhao W; Ma J; Ding J; Zhang P; Zhao GP J Biol Chem; 2014 Oct; 289(40):27966-78. PubMed ID: 25128527 [TBL] [Abstract][Full Text] [Related]
53. Kinetic and chemical mechanism of alpha-isopropylmalate synthase from Mycobacterium tuberculosis. de Carvalho LP; Blanchard JS Biochemistry; 2006 Jul; 45(29):8988-99. PubMed ID: 16846242 [TBL] [Abstract][Full Text] [Related]
54. Improvement of an l-Leucine-Producing Mutant of Brevibacterium lactofermentum 2256 by Genetically Desensitizing It to alpha-Acetohydroxy Acid Synthetase. Tsuchida T; Momose H Appl Environ Microbiol; 1986 May; 51(5):1024-7. PubMed ID: 16347048 [TBL] [Abstract][Full Text] [Related]
55. Reversible, coenzyme-A-mediated inactivation of biosynthetic condensing enzymes in yeast: a possible regulatory mechanism. Tracy JW; Kohlhaw GB Proc Natl Acad Sci U S A; 1975 May; 72(5):1802-6. PubMed ID: 1099580 [TBL] [Abstract][Full Text] [Related]
56. Enhanced formation of isoamyl alcohol in Zygosaccharomyces rouxii due to elimination of feedback inhibition of alpha-isopropylmalate synthase. Yoshikawa S; Oguri I; Kondo K; Fukuzawa M; Shimosaka M; Okazaki M FEMS Microbiol Lett; 1995 Mar; 127(1-2):139-43. PubMed ID: 7737476 [TBL] [Abstract][Full Text] [Related]
57. Incorporation of norvaline at leucine positions in recombinant human hemoglobin expressed in Escherichia coli. Apostol I; Levine J; Lippincott J; Leach J; Hess E; Glascock CB; Weickert MJ; Blackmore R J Biol Chem; 1997 Nov; 272(46):28980-8. PubMed ID: 9360970 [TBL] [Abstract][Full Text] [Related]
58. Influence of mutation in the regulatory domain of α-isopropylmalate synthase from Saccharomyces cerevisiae on its activity and feedback inhibition. Takagi H; Yamamoto K; Matsuo Y; Furuie M; Kasayuki Y; Ohtani R; Shiotani M; Hasegawa T; Ohnishi T; Ohashi M; Johzuka K; Kurata A; Uegaki K Biosci Biotechnol Biochem; 2022 May; 86(6):755-762. PubMed ID: 35333283 [TBL] [Abstract][Full Text] [Related]
59. Correlation between generation times and L-threonine dehydratase activities in isoleucine revertants of Serratia marcescens. Komatsubara S; Kisumi M; Chibata I J Gen Microbiol; 1976 Jun; 94(2):413-6. PubMed ID: 781184 [No Abstract] [Full Text] [Related]
60. Alpha-isopropylmalate synthase as a marker for the leucine biosynthetic pathway in several clostridia and in Bacteroides fragilis. Wiegel J Arch Microbiol; 1981 Dec; 130(5):385-90. PubMed ID: 6798949 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]