BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7940675)

  • 1. Mammalian L-amino acid decarboxylases producing 1,4-diamines: analogies among differences.
    Viguera E; Trelles O; Urdiales JL; Matés JM; Sánchez-Jiménez F
    Trends Biochem Sci; 1994 Aug; 19(8):318-9. PubMed ID: 7940675
    [No Abstract]   [Full Text] [Related]  

  • 2. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases.
    Sandmeier E; Hale TI; Christen P
    Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional analogies and differences between histidine decarboxylase and aromatic l-amino acid decarboxylase molecular networks: Biomedical implications.
    Sanchez-Jiménez F; Pino-Ángeles A; Rodríguez-López R; Morales M; Urdiales JL
    Pharmacol Res; 2016 Dec; 114():90-102. PubMed ID: 27769832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence for structure-activity features in common between mammalian histidine decarboxylase and ornithine decarboxylase.
    Engel N; Olmo MT; Coleman CS; Medina MA; Pegg AE; Sánchez-Jiménez F
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):365-8. PubMed ID: 8973541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian histidine decarboxylase and dopa decarboxylase.
    Wada H; Taketoshi M; Imamura I; Tanaka T; Horio Y; Taguchi Y; Fukui H
    Ann N Y Acad Sci; 1990; 585():145-61. PubMed ID: 1694064
    [No Abstract]   [Full Text] [Related]  

  • 6. Histamine, polyamines, and cancer.
    Medina MA; Quesada AR; Núñez de Castro I; Sánchez-Jiménez F
    Biochem Pharmacol; 1999 Jun; 57(12):1341-4. PubMed ID: 10353253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pest regions containing C-termini of mammalian ornithine decarboxylase and histidine decarboxylase play different roles in protein degradation.
    Olmo MT; Rodríguez-Agudo D; Medina MA; Sánchez-Jiménez F
    Biochem Biophys Res Commun; 1999 Apr; 257(2):269-72. PubMed ID: 10198201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diamines and polyamines in DMBA-induced breast carcinoma containing mast cells resistant to compound 48/80.
    Andersson AC; Henningsson S; Lundell L; Rosengren E; Sundler F
    Agents Actions; 1976 Sep; 6(5):577-83. PubMed ID: 970287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of phorbol ester and dexamethasone treatment on histidine decarboxylase and ornithine decarboxylase in basophilic cells.
    Fajardo I; Urdiales JL; Medina MA; Sanchez-Jimenez F
    Biochem Pharmacol; 2001 May; 61(9):1101-6. PubMed ID: 11301043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications.
    Facchini PJ; Huber-Allanach KL; Tari LW
    Phytochemistry; 2000 May; 54(2):121-38. PubMed ID: 10872203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The origin of histamine].
    Maśliński C
    Acta Physiol Pol; 1981; 32 Suppl 22():3-11. PubMed ID: 7039235
    [No Abstract]   [Full Text] [Related]  

  • 12. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase.
    Wu F; Christen P; Gehring H
    FASEB J; 2011 Jul; 25(7):2109-22. PubMed ID: 21454364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionally important residues of aromatic L-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis.
    Ishii S; Mizuguchi H; Nishino J; Hayashi H; Kagamiyama H
    J Biochem; 1996 Aug; 120(2):369-76. PubMed ID: 8889823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of catalytically important residues in the rat L-histidine decarboxylase enzyme using bioinformatic and site-directed mutagenesis approaches.
    Fleming JV; Sánchez-Jiménez F; Moya-García AA; Langlois MR; Wang TC
    Biochem J; 2004 Apr; 379(Pt 2):253-61. PubMed ID: 14961766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of kidney decarboxylases of histidine and ornithine in adrenalectomized mice substituted with cortisone.
    Andersson AC; Henningsson S; Rosengren E
    Experientia; 1975 Sep; 31(9):1101-3. PubMed ID: 1175756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis and inactivation of histamine in rabbit dental pulp.
    Antila R
    Proc Finn Dent Soc; 1983; 79(3):115-22. PubMed ID: 6647455
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of characteristics of bovine aromatic L-amino acid decarboxylase with human enzyme.
    Nasrin S; Ichinose H; Nagatsu T
    Biochim Biophys Acta; 1992 Feb; 1118(3):318-22. PubMed ID: 1737055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase.
    Momany C; Ghosh R; Hackert ML
    Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feline endotoxin shock: effects on tissue histamine and histidine decarboxylase activity.
    Parratt JR; Saleh S; Waton NG
    Br J Pharmacol; 1986 Dec; 89(4):635-40. PubMed ID: 2434172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of fungal ornithine decarboxylases.
    Torres-Guzman JC; Xoconostle-Cazares B; Guevara-Olvera L; Ortiz L; San-Blas G; Dominguez A; Ruiz-Herrera J
    Curr Microbiol; 1996 Dec; 33(6):390-2. PubMed ID: 8900106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.