These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7941356)

  • 1. Involvement of the cucumber necrosis virus coat protein in the specificity of fungus transmission by Olpidium bornovanus.
    McLean MA; Campbell RN; Hamilton RI; Rochon DM
    Virology; 1994 Nov; 204(2):840-2. PubMed ID: 7941356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cucumber necrosis virus variant deficient in fungal transmissibility contains an altered coat protein shell domain.
    Robbins MA; Reade RD; Rochon DM
    Virology; 1997 Jul; 234(1):138-46. PubMed ID: 9234955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of specific cucumber necrosis virus coat protein amino acids affecting fungus transmission and zoospore attachment.
    Kakani K; Sgro JY; Rochon D
    J Virol; 2001 Jun; 75(12):5576-83. PubMed ID: 11356965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of wild-type virus by double recombination of tombusvirus mutants with a host transgene.
    Borja M; Rubio T; Scholthof HB; Jackson AO
    Mol Plant Microbe Interact; 1999 Feb; 12(2):153-62. PubMed ID: 9926415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic structure of Cucumber necrosis virus and the role of the capsid in vector transmission.
    Li M; Kakani K; Katpally U; Johnson S; Rochon D; Smith TJ
    J Virol; 2013 Nov; 87(22):12166-75. PubMed ID: 24006433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission.
    Sherman MB; Kakani K; Rochon D; Jiang W; Voss NR; Smith TJ
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28724762
    [No Abstract]   [Full Text] [Related]  

  • 7. Structures of T=1 and T=3 particles of cucumber necrosis virus: evidence of internal scaffolding.
    Katpally U; Kakani K; Reade R; Dryden K; Rochon D; Smith TJ
    J Mol Biol; 2007 Jan; 365(2):502-12. PubMed ID: 17049553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that binding of cucumber necrosis virus to vector zoospores involves recognition of oligosaccharides.
    Kakani K; Robbins M; Rochon D
    J Virol; 2003 Apr; 77(7):3922-8. PubMed ID: 12634352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The protruding domain of the coat protein of Melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus.
    Ohki T; Akita F; Mochizuki T; Kanda A; Sasaya T; Tsuda S
    Virology; 2010 Jun; 402(1):129-34. PubMed ID: 20381824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that vector transmission of a plant virus requires conformational change in virus particles.
    Kakani K; Reade R; Rochon D
    J Mol Biol; 2004 Apr; 338(3):507-17. PubMed ID: 15081809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing.
    Qu F; Morris TJ
    Mol Plant Microbe Interact; 2002 Mar; 15(3):193-202. PubMed ID: 11952121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of efficient endogenous gene silencing in Nicotiana benthamiana plants using tomato bushy stunt virus vectors that retain the capsid protein gene.
    Pignatta D; Kumar P; Turina M; Dandekar A; Falk BW
    Mol Plant Microbe Interact; 2007 Jun; 20(6):609-18. PubMed ID: 17555269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host effects and sequences essential for accumulation of defective interfering RNAs of cucumber necrosis and tomato bushy stunt tombusviruses.
    Chang YC; Borja M; Scholthof HB; Jackson AO; Morris TJ
    Virology; 1995 Jun; 210(1):41-53. PubMed ID: 7793079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both RNA rearrangement and point mutation contribute to repair of defective chimeric viral genomes to form functional hybrid viruses in plants.
    Reade R; Wu Z; Rochon D
    Virology; 1999 Jun; 258(2):217-31. PubMed ID: 10366559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using vectors derived from tomato bushy stunt virus (TBSV) and TBSV defective interfering RNAs (DIs).
    Qiu W; Scholthof HB
    Curr Protoc Microbiol; 2007 Nov; Chapter 16():Unit 16I.4. PubMed ID: 18770620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial purification and characterization of Cucumber necrosis virus and Tomato bushy stunt virus RNA-dependent RNA polymerases: similarities and differences in template usage between tombusvirus and carmovirus RNA-dependent RNA polymerases.
    Nagy PD; Pogany J
    Virology; 2000 Oct; 276(2):279-88. PubMed ID: 11040120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that Hsc70 Is Associated with Cucumber Necrosis Virus Particles and Plays a Role in Particle Disassembly.
    Alam SB; Rochon D
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27807229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-influenced cap-independent translation of Tombusvirus mRNAs in vitro.
    Nicholson BL; White KA
    Virology; 2008 Oct; 380(2):203-12. PubMed ID: 18775547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication of Tomato bushy stunt virus RNA in a plant in vitro system.
    Gursinsky T; Schulz B; Behrens SE
    Virology; 2009 Aug; 390(2):250-60. PubMed ID: 19520410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symptomatology and movement of a cucumber necrosis virus mutant lacking the coat protein protruding domain.
    McLean MA; Hamilton RI; Rochon DM
    Virology; 1993 Apr; 193(2):932-9. PubMed ID: 8460495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.