These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 7941414)
1. Growth and optical development of the ocular lens of the squid (Sepioteuthis lessoniana). Sivak JG; West JA; Campbell MC Vision Res; 1994 Sep; 34(17):2177-87. PubMed ID: 7941414 [TBL] [Abstract][Full Text] [Related]
2. Changes in spherical aberration after lens refilling with a silicone oil. Wong KH; Koopmans SA; Terwee T; Kooijman AC Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171 [TBL] [Abstract][Full Text] [Related]
3. Aging and the optical quality of the rat crystalline lens. Sivak JG; Dovrat A Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1162-6. PubMed ID: 6885305 [TBL] [Abstract][Full Text] [Related]
4. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism. Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582 [TBL] [Abstract][Full Text] [Related]
6. Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni. Kröger RH; Campbell MC; Munger R; Fernald RD Vision Res; 1994 Jul; 34(14):1815-22. PubMed ID: 7941384 [TBL] [Abstract][Full Text] [Related]
7. Optical development of the ocular lens of an elasmobranch, Raja eglanteria [corrected]. Sivak JG; Luer CA Vision Res; 1991; 31(3):373-82. PubMed ID: 1843749 [TBL] [Abstract][Full Text] [Related]
8. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans. Kröger RH; Gislén A Vision Res; 2004; 44(18):2129-34. PubMed ID: 15183679 [TBL] [Abstract][Full Text] [Related]
9. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher. Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492 [TBL] [Abstract][Full Text] [Related]
10. Embryonic lens of the human eye as an optical structure. Sivak JG; Dovrat A Am J Optom Physiol Opt; 1987 Aug; 64(8):599-603. PubMed ID: 3661670 [TBL] [Abstract][Full Text] [Related]
11. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses. Birkenfeld J; de Castro A; Marcos S Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101 [TBL] [Abstract][Full Text] [Related]
12. Optical quality of the ocular lens of the sea lamprey (Petromyzon marinus) during the mature and transformer periods of life. Bantseev V; Auclair F; Dubuc R; Sivak JG J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jun; 191(6):505-9. PubMed ID: 15818479 [TBL] [Abstract][Full Text] [Related]
13. Spherical aberration of the lens of the ground squirrel (Spermophilis tridecemlineatus). Sivak JG; Gur M; Dovrat A Ophthalmic Physiol Opt; 1983; 3(3):261-5. PubMed ID: 6646760 [TBL] [Abstract][Full Text] [Related]
14. The effect of varying glucose levels on the ex vivo crystalline lens: implications for hyperglycaemia-induced refractive changes. Mehta VV; Hull CC; Lawrenson JG Ophthalmic Physiol Opt; 2015 Jan; 35(1):52-9. PubMed ID: 25424300 [TBL] [Abstract][Full Text] [Related]
15. The lens of the eye as a focusing device and its response to stress. Banh A; Bantseev V; Choh V; Moran KL; Sivak JG Prog Retin Eye Res; 2006 Mar; 25(2):189-206. PubMed ID: 16330238 [TBL] [Abstract][Full Text] [Related]
16. A wide-angle gradient index optical model of the crystalline lens and eye of the rainbow trout. Jagger WS; Sands PJ Vision Res; 1996 Sep; 36(17):2623-39. PubMed ID: 8917750 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the ontogeny of hunting behavior in pharaoh cuttlefish (Sepia pharaonis) and oval squid (Sepioteuthis lessoniana). Sugimoto C; Ikeda Y Biol Bull; 2013 Sep; 225(1):50-9. PubMed ID: 24088796 [TBL] [Abstract][Full Text] [Related]
18. Relation between injected volume and optical parameters in refilled isolated porcine lenses. Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485 [TBL] [Abstract][Full Text] [Related]
19. A quantitative analysis of sutural contributions to variability in back vertex distance and transmittance in rabbit lenses as a function of development, growth, and age. Kuszak JR; Al-Ghoul KJ Optom Vis Sci; 2002 Mar; 79(3):193-204. PubMed ID: 11913845 [TBL] [Abstract][Full Text] [Related]
20. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Glasser A; Campbell MC Vision Res; 1999 Jun; 39(11):1991-2015. PubMed ID: 10343784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]