BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7942053)

  • 21. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions.
    Kristiansen S; Asp S; Richter EA
    Am J Physiol; 1996 Aug; 271(2 Pt 2):R477-82. PubMed ID: 8770151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of force development on contraction induced glucose transport in fast twitch rat muscle.
    Ihlemann J; Ploug T; Galbo H
    Acta Physiol Scand; 2001 Apr; 171(4):439-44. PubMed ID: 11421859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insulin action on rates of muscle protein synthesis following eccentric, muscle-damaging contractions.
    Fluckey JD; Asp S; Enevoldsen LH; Galbo H
    Acta Physiol Scand; 2001 Dec; 173(4):379-84. PubMed ID: 11903129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leucine modulates contraction- and insulin-stimulated glucose transport and upstream signaling events in rat skeletal muscle.
    Iwanaka N; Egawa T; Satoubu N; Karaike K; Ma X; Masuda S; Hayashi T
    J Appl Physiol (1985); 2010 Feb; 108(2):274-82. PubMed ID: 19940100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resistance training increases glucose uptake and transport in rat skeletal muscle.
    Yaspelkis BB; Singh MK; Trevino B; Krisan AD; Collins DE
    Acta Physiol Scand; 2002 Aug; 175(4):315-23. PubMed ID: 12167170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage.
    Fogt DL; Pan S; Lee S; Ding Z; Scrimgeour A; Lawrence JC; Ivy JL
    Am J Physiol Endocrinol Metab; 2004 Mar; 286(3):E363-9. PubMed ID: 14570701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle.
    Wright DC; Geiger PC; Holloszy JO; Han DH
    Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1062-6. PubMed ID: 15657088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel insulin sensitizer (S15511) enhances insulin-stimulated glucose uptake in rat skeletal muscles.
    Jessen N; Selmer Buhl E; Pold R; Schmitz O; Lund S
    Horm Metab Res; 2008 Apr; 40(4):269-75. PubMed ID: 18548386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat.
    Merry TL; Dywer RM; Bradley EA; Rattigan S; McConell GK
    J Appl Physiol (1985); 2010 May; 108(5):1275-83. PubMed ID: 20203065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased muscle glucose uptake after exercise. No need for insulin during exercise.
    Richter EA; Ploug T; Galbo H
    Diabetes; 1985 Oct; 34(10):1041-8. PubMed ID: 3899806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose transport and metabolism in the perfused hindquarters of lean and obese-hyperglycemic (db/db) mice. Effects of insulin and electrical stimulation.
    Chan TM; Tatoyan A
    Biochim Biophys Acta; 1984 Apr; 798(3):325-32. PubMed ID: 6424725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic leptin administration increases insulin-stimulated skeletal muscle glucose uptake and transport.
    Yaspelkis BB; Ansari L; Ramey EL; Holland GJ; Loy SF
    Metabolism; 1999 May; 48(5):671-6. PubMed ID: 10337873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contractile activity increases plasma membrane glucose transporters in absence of insulin.
    Goodyear LJ; King PA; Hirshman MF; Thompson CM; Horton ED; Horton ES
    Am J Physiol; 1990 Apr; 258(4 Pt 1):E667-72. PubMed ID: 2159218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perfused rat hindlimb is suitable for skeletal muscle glucose transport measurements.
    Wojtaszewski JF; Jakobsen AB; Ploug T; Richter EA
    Am J Physiol; 1998 Jan; 274(1):E184-91. PubMed ID: 9458764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased glucose transport in nonexercising muscle.
    Megeney LA; Elder GC; Tan MH; Bonen A
    Am J Physiol; 1992 Jan; 262(1 Pt 1):E20-6. PubMed ID: 1733246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle alpha-aminoisobutyric acid transport after exercise: enhanced stimulation by insulin.
    Zorzano A; Balon TW; Garetto LP; Goodman MN; Ruderman NB
    Am J Physiol; 1985 May; 248(5 Pt 1):E546-52. PubMed ID: 3887941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of alkaline pH on the stimulation of glucose transport in rat skeletal muscle.
    Ren JM; Youn JH; Gulve EA; Henriksen EJ; Holloszy JO
    Biochim Biophys Acta; 1993 Feb; 1145(2):199-204. PubMed ID: 8431452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake.
    Richter EA; Hansen BF; Hansen SA
    Biochem J; 1988 Jun; 252(3):733-7. PubMed ID: 3421919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced muscle glucose metabolism after exercise: modulation by local factors.
    Richter EA; Garetto LP; Goodman MN; Ruderman NB
    Am J Physiol; 1984 Jun; 246(6 Pt 1):E476-82. PubMed ID: 6430094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypoxia and contractions do not utilize the same signaling mechanism in stimulating skeletal muscle glucose transport.
    Wojtaszewski JF; Laustsen JL; Derave W; Richter EA
    Biochim Biophys Acta; 1998 May; 1380(3):396-404. PubMed ID: 9555102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.