These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 7942122)
1. Imaging reactive oxygen species in asthma. Vachier I; Le Doucen C; Loubatière J; Damon M; Térouanne B; Nicolas JC; Chanez P; Godard P J Biolumin Chemilumin; 1994; 9(3):171-5. PubMed ID: 7942122 [TBL] [Abstract][Full Text] [Related]
2. Increased oxygen species generation in blood monocytes of asthmatic patients. Vachier I; Damon M; Le Doucen C; de Paulet AC; Chanez P; Michel FB; Godard P Am Rev Respir Dis; 1992 Nov; 146(5 Pt 1):1161-6. PubMed ID: 1443865 [TBL] [Abstract][Full Text] [Related]
3. Validation of different chemilumigenic substrates for detecting extracellular generation of reactive oxygen species by phagocytes and endothelial cells. Kopprasch S; Pietzsch J; Graessler J Luminescence; 2003; 18(5):268-73. PubMed ID: 14587078 [TBL] [Abstract][Full Text] [Related]
4. Myeloperoxidase-based chemiluminescence of polymorphonuclear leukocytes and monocytes. McNally JA; Bell AL J Biolumin Chemilumin; 1996; 11(2):99-106. PubMed ID: 8726584 [TBL] [Abstract][Full Text] [Related]
5. Chemiluminescence of bronchoalveolar macrophages: effect of adherence to plastic cuvette. De Sole P; Frigieri L; Fresu R; Di Mario G; Corvaglia AG; Petrosino A; Pagliari G Arch Immunol Ther Exp (Warsz); 1992; 40(1):55-8. PubMed ID: 1485828 [TBL] [Abstract][Full Text] [Related]
6. Effect of adherence to plastic on peripheral blood monocyte and alveolar macrophage chemiluminescence. De Sole P; Fresu R; Frigieri L; Pagliari G; De Simone C; Guerriero C J Biolumin Chemilumin; 1993; 8(3):153-8. PubMed ID: 8493885 [TBL] [Abstract][Full Text] [Related]
7. Effect of interferon-alpha on production of reactive oxygen species by human neutrophils. Koie T; Suzuki K; Shimoyama T; Umeda T; Nakaji S; Sugawara K Luminescence; 2001; 16(1):39-43. PubMed ID: 11180657 [TBL] [Abstract][Full Text] [Related]
8. Oxidative metabolism and release of myeloperoxidase from polymorphonuclear leukocytes obtained from blood sedimentation in a Ficoll-Hypaque gradient. Rebecchi IM; Ferreira Novo N; Julian Y; Campa A Cell Biochem Funct; 2000 Jun; 18(2):127-32. PubMed ID: 10814971 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species. Rinaldi M; Moroni P; Paape MJ; Bannerman DD Vet Immunol Immunopathol; 2007 Jan; 115(1-2):107-25. PubMed ID: 17067684 [TBL] [Abstract][Full Text] [Related]
10. Effects of lysophospholipids on the generation of reactive oxygen species by fMLP- and PMA-stimulated human neutrophils. Müller J; Petković M; Schiller J; Arnold K; Reichl S; Arnhold J Luminescence; 2002; 17(3):141-9. PubMed ID: 12164363 [TBL] [Abstract][Full Text] [Related]
11. Phagocytosis induction of chemiluminescence and chemoattractant increased superoxide anion release from activated human alveolar macrophages in asthma. Damon M; Cluzel M; Chanez P; Godard P J Biolumin Chemilumin; 1989 Jul; 4(1):279-86. PubMed ID: 2552756 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the chemiluminescence response of human neutrophils and mononuclear cells. Falck P Folia Biol (Praha); 1986; 32(2):103-15. PubMed ID: 3755109 [TBL] [Abstract][Full Text] [Related]
13. Activation of equine neutrophils by phorbol myristate acetate or N-formyl-methionyl-leucyl-phenylalanine induces a different response in reactive oxygen species production and release of active myeloperoxidase. Franck T; Kohnen S; de la Rebière G; Deby-Dupont G; Deby C; Niesten A; Serteyn D Vet Immunol Immunopathol; 2009 Aug; 130(3-4):243-50. PubMed ID: 19328559 [TBL] [Abstract][Full Text] [Related]
14. Effects of zinc on the reactive oxygen species generating capacity of human neutrophils and on the serum opsonic activity in vitro. Hasegawa H; Suzuki K; Suzuki K; Nakaji S; Sugawara K Luminescence; 2000; 15(5):321-7. PubMed ID: 11038490 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of reactive oxygen species formation in stable and unstable asthmatic patients. Vachier I; Chanez P; Le Doucen C; Damon M; Descomps B; Godard P Eur Respir J; 1994 Sep; 7(9):1585-92. PubMed ID: 7995385 [TBL] [Abstract][Full Text] [Related]
16. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. Aitken RJ; Buckingham DW; West KM J Cell Physiol; 1992 Jun; 151(3):466-77. PubMed ID: 1338331 [TBL] [Abstract][Full Text] [Related]
17. Assessment of training effects on activity levels of alveolar macrophage in matured rats using chemiluminescent technique. Kumae T; Arakawa H Luminescence; 2003; 18(1):61-6. PubMed ID: 12536382 [TBL] [Abstract][Full Text] [Related]
18. Modulation of superoxide production of alveolar macrophages and peripheral blood mononuclear cells by beta-agonists and theophylline. Calhoun WJ; Stevens CA; Lambert SB J Lab Clin Med; 1991 Jun; 117(6):514-22. PubMed ID: 1675244 [TBL] [Abstract][Full Text] [Related]
19. Interaction between leucocytes and human spermatozoa influencing reactive oxygen intermediates release. Fraczek M; Sanocka D; Kurpisz M Int J Androl; 2004 Apr; 27(2):69-75. PubMed ID: 15149463 [TBL] [Abstract][Full Text] [Related]
20. Luminol-, isoluminol- and lucigenin-enhanced chemiluminescence of rat blood phagocytes stimulated with different activators. Pavelkova M; Kubala L Luminescence; 2004; 19(1):37-42. PubMed ID: 14981645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]