BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7942147)

  • 1. New model for bone resorption study in vitro: human osteoclast-like cells from giant cell tumors of bone.
    Grano M; Colucci S; De Bellis M; Zigrino P; Argentino L; Zambonin G; Serra M; Scotlandi K; Teti A; Zambonin Zallone A
    J Bone Miner Res; 1994 Jul; 9(7):1013-20. PubMed ID: 7942147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cells cultured from human giant-cell tumors of bone. Phenotypic relationship to the monocyte-macrophage and osteoclast.
    Komiya S; Sasaguri Y; Inoue A; Nakashima M; Yamamoto S; Yanagida I; Morimatsu M
    Clin Orthop Relat Res; 1990 Sep; (258):304-9. PubMed ID: 2168302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cord blood monocytes undergo terminal osteoclast differentiation in vitro in the presence of culture medium conditioned by giant cell tumor of bone.
    Roux S; Quinn J; Pichaud F; Orcel P; Chastre E; Jullienne A; De Vernejoul MC
    J Cell Physiol; 1996 Sep; 168(3):489-98. PubMed ID: 8816903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic and molecular studies of giant-cell tumors of bone and soft tissue.
    Lau YS; Sabokbar A; Gibbons CL; Giele H; Athanasou N
    Hum Pathol; 2005 Sep; 36(9):945-54. PubMed ID: 16153456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and biochemical characterization of osteoclast-like cells derived from giant cell tumours of bone.
    Grano M; Colucci S; Portoghese A; Zambonin G; Barattolo R; Serra M; Scotlandi K; Teti A; Zambonin Zallone A
    Boll Soc Ital Biol Sper; 1992 Apr; 68(4):249-53. PubMed ID: 1463598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoclasts are present in the giant cell variant of malignant fibrous histiocytoma.
    Flanagan AM; Chambers TJ
    J Pathol; 1989 Sep; 159(1):53-7. PubMed ID: 2553905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immunohistological study of giant-cell tumour of bone: evidence for an osteoclast origin of the giant cells.
    Athanasou NA; Bliss E; Gatter KC; Heryet A; Woods CG; McGee JO
    J Pathol; 1985 Nov; 147(3):153-8. PubMed ID: 4067733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The osteoclast: review of ultrastructure, origin, and structure-function relationship.
    Göthlin G; Ericsson JL
    Clin Orthop Relat Res; 1976 Oct; (120):201-31. PubMed ID: 975659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of synthetic peptido-leukotrienes on bone resorption in vitro.
    Garcia C; Qiao M; Chen D; Kirchen M; Gallwitz W; Mundy GR; Bonewald LF
    J Bone Miner Res; 1996 Apr; 11(4):521-9. PubMed ID: 8992883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of action of amylin in bone.
    Tamura T; Miyaura C; Owan I; Suda T
    J Cell Physiol; 1992 Oct; 153(1):6-14. PubMed ID: 1325980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular and molecular effects of growth hormone and estrogen on human bone cells.
    Kassem M
    APMIS Suppl; 1997; 71():1-30. PubMed ID: 9357492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of calcium regulating hormones on bone resorption by isolated human osteoclastoma cells.
    Chambers TJ; Fuller K; McSheehy PM; Pringle JA
    J Pathol; 1985 Apr; 145(4):297-305. PubMed ID: 2987469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a cell line derived from a human giant cell tumor that stimulates osteoclastic bone resorption.
    Oreffo RO; Marshall GJ; Kirchen M; Garcia C; Gallwitz WE; Chavez J; Mundy GR; Bonewald LF
    Clin Orthop Relat Res; 1993 Nov; (296):229-41. PubMed ID: 8222432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin E2 stimulates osteoclast-like cell formation and bone-resorbing activity via osteoblasts: role of cAMP-dependent protein kinase.
    Kaji H; Sugimoto T; Kanatani M; Fukase M; Kumegawa M; Chihara K
    J Bone Miner Res; 1996 Jan; 11(1):62-71. PubMed ID: 8770698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and hormonal mechanisms associated with malignant bone resorption.
    Quinn JM; Matsumura Y; Tarin D; McGee JO; Athanasou NA
    Lab Invest; 1994 Oct; 71(4):465-71. PubMed ID: 7526033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleukin-6 antisense deoxyoligonucleotides inhibit bone resorption by giant cells from human giant cell tumors of bone.
    Reddy SV; Takahashi S; Dallas M; Williams RE; Neckers L; Roodman GD
    J Bone Miner Res; 1994 May; 9(5):753-7. PubMed ID: 8053406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical characterization of osteoclasts and osteoclast-like cells with monoclonal antibody MB1 on paraffin-embedded tissues.
    Chilosi M; Gilioli E; Lestani M; Menestrina F; Fiore-Donati L
    J Pathol; 1988 Nov; 156(3):251-4. PubMed ID: 2904980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assay system utilizing devitalized bone for assessment of differentiation of osteoclast progenitors.
    Amano S; Hanazawa S; Kawata Y; Ohta K; Kitami H; Kitano S
    J Bone Miner Res; 1992 Mar; 7(3):321-8. PubMed ID: 1585834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spindle-shaped cells derived from giant-cell tumor of bone support differentiation of blood monocytes to osteoclast-like cells.
    Miyamoto N; Higuchi Y; Tajima M; Ito M; Tsurudome M; Nishio M; Kawano M; Sudo A; Uchida A; Ito Y
    J Orthop Res; 2000 Jul; 18(4):647-54. PubMed ID: 11052502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of an osteoblastic cell line involved in the formation of osteoclast-like cells.
    Yamashita T; Asano K; Takahashi N; Akatsu T; Udagawa N; Sasaki T; Martin TJ; Suda T
    J Cell Physiol; 1990 Dec; 145(3):587-95. PubMed ID: 1703173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.