These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 7942147)
41. Calcitonin effects on osteoclastic resorption: the 'escape phenomenon' revisited. Heersche JN Bone Miner; 1992 Mar; 16(3):174-7. PubMed ID: 1314121 [No Abstract] [Full Text] [Related]
42. A study of the acid phosphatase in the cells of bone and soft parts tumors, and of other tumorous conditions. Morisawa K Nihon Seikeigeka Gakkai Zasshi; 1983 Dec; 57(12):1937-50. PubMed ID: 6586923 [TBL] [Abstract][Full Text] [Related]
43. The multinucleate cells in giant cell granulomas of the jaw are osteoclasts. Flanagan AM; Nui B; Tinkler SM; Horton MA; Williams DM; Chambers TJ Cancer; 1988 Sep; 62(6):1139-45. PubMed ID: 2457425 [TBL] [Abstract][Full Text] [Related]
44. Histochemistry of tartrate-resistant acid phosphatase and carbonic anhydrase isoenzyme II in osteoclast-like giant cells in bone tumours. Toyosawa S; Ogawa Y; Chang CK; Hong SS; Yagi T; Kuwahara H; Wakasa K; Sakurai M Virchows Arch A Pathol Anat Histopathol; 1991; 418(3):255-61. PubMed ID: 1900971 [TBL] [Abstract][Full Text] [Related]
45. Culturing of cells from giant cell tumour of bone on natural and synthetic calcified substrata: the effect of leukaemia inhibitory factor and vitamin D3 on the resorbing activity of osteoclast-like cells. Soueidan A; Gan OI; Gouin F; Godard A; Heymann D; Jacques Y; Daculsi G Virchows Arch; 1995; 426(5):469-77. PubMed ID: 7633657 [TBL] [Abstract][Full Text] [Related]
46. [The relationship between cell kinetics and histological features of giant cell tumor of the bone]. Kusuzaki K; Kuzuhara A; Takeshita H; Ban S; Yamashita F; Sakakida K; Kamachi M; Ashihara T Nihon Seikeigeka Gakkai Zasshi; 1986 Jan; 60(1):51-60. PubMed ID: 3701159 [TBL] [Abstract][Full Text] [Related]
47. Bone resorption by macrophage polykaryons of a pilar tumor of scalp. Athanasou NA; Quinn JM Cancer; 1992 Jul; 70(2):469-75. PubMed ID: 1617596 [TBL] [Abstract][Full Text] [Related]
48. Characterization of a subtype of primary osteoclastoma: extracellular calcium but not calcitonin inhibits aggressive HLA-DR-positive osteoclastoma possessing 'functional' calcitonin receptors. Rathod H; Malcolm AJ; Gillespie JI; Berry V; Pooley J; Piggott NH; Datta HK J Pathol; 1994 Dec; 174(4):293-9. PubMed ID: 7884591 [TBL] [Abstract][Full Text] [Related]
49. Human giant cell tumors of bone identification and characterization of cell types. Goldring SR; Roelke MS; Petrison KK; Bhan AK J Clin Invest; 1987 Feb; 79(2):483-91. PubMed ID: 3027126 [TBL] [Abstract][Full Text] [Related]
50. The pathobiology of the osteoclast. Chambers TJ J Clin Pathol; 1985 Mar; 38(3):241-52. PubMed ID: 2982920 [TBL] [Abstract][Full Text] [Related]
51. Role of adjuvant radiation therapy in unusually rare primary malignant osteoclast-like giant cell tumor of the kidney. Tiwana MS; Kakkar S; Shirazi N; Upadhya P; Nautiyal H Indian J Cancer; 2011; 48(1):123-4. PubMed ID: 21330760 [No Abstract] [Full Text] [Related]
52. The isolation of osteoclasts from human giant cell tumors and long-term marrow cultures. Walsh CA; Carron JA; Gallagher JA Methods Mol Med; 1996; 2():263-76. PubMed ID: 21359748 [TBL] [Abstract][Full Text] [Related]
53. Giant Cell-Containing Tumors of Bone. Orosz Z; Athanasou NA Surg Pathol Clin; 2017 Sep; 10(3):553-573. PubMed ID: 28797502 [TBL] [Abstract][Full Text] [Related]
54. [In vitro growth characteristics of human bone tumors]. Ishii S; Nishimura N; Kikuta Y; Inada M Nihon Seikeigeka Gakkai Zasshi; 1968 Mar; 42(3):169-75. PubMed ID: 5692457 [No Abstract] [Full Text] [Related]
55. In vitro bone resorption by isolated multinucleated giant cells from giant cell tumour of bone: light and electron microscopic study. Kanehisa J; Izumo T; Takeuchi M; Yamanaka T; Fujii T; Takeuchi H Virchows Arch A Pathol Anat Histopathol; 1991; 419(4):327-38. PubMed ID: 1949615 [TBL] [Abstract][Full Text] [Related]
56. The ultrastructure of nuclear inclusions in the giant-cell tumor of bone. Negoescu A; Mandache E Pathol Res Pract; 1989 Apr; 184(4):410-7. PubMed ID: 2726607 [TBL] [Abstract][Full Text] [Related]
57. Cellular biology of bone-resorbing cells. Athanasou NA J Bone Joint Surg Am; 1996 Jul; 78(7):1096-112. PubMed ID: 8698729 [No Abstract] [Full Text] [Related]
58. 'Calcium-activated' intracellular calcium elevation: a novel mechanism of osteoclast regulation. Zaidi M; Datta HK; Patchell A; Moonga B; MacIntyre I Biochem Biophys Res Commun; 1989 Sep; 163(3):1461-5. PubMed ID: 2783143 [TBL] [Abstract][Full Text] [Related]
59. Multinucleated rat alveolar macrophages express functional receptors for calcitonin. Vignery A; Raymond MJ; Qian HY; Wang F; Rosenzweig SA Am J Physiol; 1991 Dec; 261(6 Pt 2):F1026-32. PubMed ID: 1721493 [TBL] [Abstract][Full Text] [Related]
60. Hypocalcemia response following calcitonin administration: lack of correlation with osteoclast number determined after histoenzymologic identification in osteoporosis. Palle S; Chappard D; Vico L; Alexandre C Clin Rheumatol; 1988 Sep; 7(3):354-8. PubMed ID: 3229081 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]