These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7942279)

  • 1. Predicting the conformation of proteins from sequences. Progress and future progress.
    Benner SA; Jenny TF; Cohen MA; Gonnet GH
    Adv Enzyme Regul; 1994; 34():269-353. PubMed ID: 7942279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the conformation of proteins from sequences. Progress and future progress.
    Benner SA
    J Mol Recognit; 1995; 8(1-2):9-28. PubMed ID: 7598957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bona fide prediction of aspects of protein conformation. Assigning interior and surface residues from patterns of variation and conservation in homologous protein sequences.
    Benner SA; Badcoe I; Cohen MA; Gerloff DL
    J Mol Biol; 1994 Jan; 235(3):926-58. PubMed ID: 8289328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHD--an automatic mail server for protein secondary structure prediction.
    Rost B; Sander C; Schneider R
    Comput Appl Biosci; 1994 Feb; 10(1):53-60. PubMed ID: 8193956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the conformation of proteins. Man versus machine.
    Benner SA; Gerloff DL
    FEBS Lett; 1993 Jun; 325(1-2):29-33. PubMed ID: 8513889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved alignment of weakly homologous protein sequences using structural information.
    Gracy J; Chiche L; Sallantin J
    Protein Eng; 1993 Nov; 6(8):821-9. PubMed ID: 8309929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence.
    Eisenhaber F; Persson B; Argos P
    Crit Rev Biochem Mol Biol; 1995; 30(1):1-94. PubMed ID: 7587278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA.
    Bystroff C; Shao Y
    Bioinformatics; 2002; 18 Suppl 1():S54-61. PubMed ID: 12169531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
    Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL
    Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profile-profile comparisons by COMPASS predict intricate homologies between protein families.
    Sadreyev RI; Baker D; Grishin NV
    Protein Sci; 2003 Oct; 12(10):2262-72. PubMed ID: 14500884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure alignment of membrane proteins: Accuracy of available tools and a consensus strategy.
    Stamm M; Forrest LR
    Proteins; 2015 Sep; 83(9):1720-32. PubMed ID: 26178143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein secondary structure: entropy, correlations and prediction.
    Crooks GE; Brenner SE
    Bioinformatics; 2004 Jul; 20(10):1603-11. PubMed ID: 14988117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The HSSP database of protein structure-sequence alignments.
    Schneider R; de Daruvar A; Sander C
    Nucleic Acids Res; 1997 Jan; 25(1):226-30. PubMed ID: 9016541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment and searching for common protein folds using a data bank of structural templates.
    Johnson MS; Overington JP; Blundell TL
    J Mol Biol; 1993 Jun; 231(3):735-52. PubMed ID: 8515448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary information hidden in a single protein structure.
    Shih CH; Chang CM; Lin YS; Lo WC; Hwang JK
    Proteins; 2012 Jun; 80(6):1647-57. PubMed ID: 22454236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information.
    Ahmad S; Gromiha MM; Sarai A
    Bioinformatics; 2004 Mar; 20(4):477-86. PubMed ID: 14990443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.