BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7943219)

  • 21. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function.
    Chow LS; Greenlund LJ; Asmann YW; Short KR; McCrady SK; Levine JA; Nair KS
    J Appl Physiol (1985); 2007 Mar; 102(3):1078-89. PubMed ID: 17110513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle.
    Neufer PD; Dohm GL
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1597-603. PubMed ID: 7506491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.
    Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA
    J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis.
    Bergeron R; Ren JM; Cadman KS; Moore IK; Perret P; Pypaert M; Young LH; Semenkovich CF; Shulman GI
    Am J Physiol Endocrinol Metab; 2001 Dec; 281(6):E1340-6. PubMed ID: 11701451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of iron deficiency and training on mitochondrial enzymes in skeletal muscle.
    Willis WT; Brooks GA; Henderson SA; Dallman PR
    J Appl Physiol (1985); 1987 Jun; 62(6):2442-6. PubMed ID: 3038829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle.
    Fentz J; Kjøbsted R; Kristensen CM; Hingst JR; Birk JB; Gudiksen A; Foretz M; Schjerling P; Viollet B; Pilegaard H; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2015 Dec; 309(11):E900-14. PubMed ID: 26419588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response of XIAP, ARC, and FLIP apoptotic suppressors to 8 wk of treadmill running in rat heart and skeletal muscle.
    Siu PM; Bryner RW; Murlasits Z; Alway SE
    J Appl Physiol (1985); 2005 Jul; 99(1):204-9. PubMed ID: 15774698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytochrome c mRNA in skeletal muscles of immobilized limbs.
    Booth FW; Lou W; Hamilton MT; Yan Z
    J Appl Physiol (1985); 1996 Nov; 81(5):1941-5. PubMed ID: 8941513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats.
    Bishop DJ; Thomas C; Moore-Morris T; Tonkonogi M; Sahlin K; Mercier J
    Am J Physiol Endocrinol Metab; 2010 Aug; 299(2):E225-33. PubMed ID: 20484007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of hypoxic living and training on gene expression in an obese rat model.
    He Z; Feng L; Zhang L; Lu Y; Xu J; Lucia A
    Med Sci Sports Exerc; 2012 Jun; 44(6):1013-20. PubMed ID: 22143106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondria are fast Ca2+ sinks in rat extraocular muscles: a novel regulatory influence on contractile function and metabolism.
    Andrade FH; McMullen CA; Rumbaut RE
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4541-7. PubMed ID: 16303946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of increased training volume on the oxidative capacity, glycogen content and tension development of rat skeletal muscle.
    Kirwan JP; Costill DL; Flynn MG; Neufer PD; Fink WJ; Morse WM
    Int J Sports Med; 1990 Dec; 11(6):479-83. PubMed ID: 2286488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of mitochondria of different types of skeletal muscle to thyrotoxicosis.
    Winder WW; Holloszy JO
    Am J Physiol; 1977 May; 232(5):C180-4. PubMed ID: 193405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exercise training increases mitochondrial biogenesis in the brain.
    Steiner JL; Murphy EA; McClellan JL; Carmichael MD; Davis JM
    J Appl Physiol (1985); 2011 Oct; 111(4):1066-71. PubMed ID: 21817111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of endurance training on oestrogen receptor alpha expression in different rat skeletal muscle type.
    Lemoine S; Granier P; Tiffoche C; Berthon PM; Thieulant ML; Carré F; Delamarche P
    Acta Physiol Scand; 2002 Jul; 175(3):211-7. PubMed ID: 12100360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles.
    Garnier A; Fortin D; Deloménie C; Momken I; Veksler V; Ventura-Clapier R
    J Physiol; 2003 Sep; 551(Pt 2):491-501. PubMed ID: 12824444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle.
    Leick L; Wojtaszewski JF; Johansen ST; Kiilerich K; Comes G; Hellsten Y; Hidalgo J; Pilegaard H
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E463-74. PubMed ID: 18073319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical adaptations in skeletal muscle of trained thyroidectomized rats.
    Terjung RL; Koerner JE
    Am J Physiol; 1976 May; 230(5):1194-7. PubMed ID: 179330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins.
    Racay P; Gregory P; Schwaller B
    FEBS J; 2006 Jan; 273(1):96-108. PubMed ID: 16367751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.