BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7943275)

  • 1. Na(+)-coupled alanine transport in LLC-PK1 cells.
    Kimmich GA; Randles J; Wilson J
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C1119-29. PubMed ID: 7943275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for the kinetic mechanism of sodium-coupled L-alanine transport in LLC-PK1 cells.
    Wilson JJ; Randles J; Kimmich GA
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C49-56. PubMed ID: 8772429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-dependent succinate transport by isolated chick intestinal cells.
    Kimmich GA; Randles J; Bennett E
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1151-7. PubMed ID: 2058650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The basolateral systems.
    Rabito CA; Karish MV
    J Biol Chem; 1982 Jun; 257(12):6802-8. PubMed ID: 7085605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+-coupled alanine transport in LLC-PK1 cells: the relationship between the Km for Na+ at low [Alanine] and potential dependence for the system.
    Wilson JJ; Randles J; Kimmich GA
    J Membr Biol; 1998 Oct; 165(3):275-82. PubMed ID: 9767681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.
    Mircheff AK; Kippen I; Hirayama B; Wright EM
    J Membr Biol; 1982; 64(1-2):113-22. PubMed ID: 7057450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous regulation of amino acid influx and efflux by system A in the hepatoma cell HTC. Ouabain simulates the starvation-induced derepression of system A amino acid transport.
    White MF; Christensen HN
    J Biol Chem; 1983 Jul; 258(13):8028-38. PubMed ID: 6863276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High- and low-affinity transport of L-leucine and L-DOPA by the hetero amino acid exchangers LAT1 and LAT2 in LLC-PK1 renal cells.
    Soares-da-Silva P; SerrĂ£o MP
    Am J Physiol Renal Physiol; 2004 Aug; 287(2):F252-61. PubMed ID: 15271688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of neutral and cationic amino acid transport in Xenopus oocytes.
    Campa MJ; Kilberg MS
    J Cell Physiol; 1989 Dec; 141(3):645-52. PubMed ID: 2592432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of ATP-depleted cells in the analysis of taurocholate uptake by isolated rat hepatocytes.
    Yamazaki M; Sugiyama Y; Suzuki H; Iga T; Hanano M
    J Hepatol; 1992 Jan; 14(1):54-63. PubMed ID: 1737916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole cell recording of sugar-induced currents in LLC-PK1 cells.
    Smith-Maxwell C; Bennett E; Randles J; Kimmich GA
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C234-42. PubMed ID: 2305866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of alanine, lysine, and proline transport in cytoplasmic membranes of the polyphosphate-accumulating Acinetobacter johnsonii strain 210A.
    Van Veen HW; Abee T; Kleefsman AW; Melgers B; Kortstee GJ; Konings WN; Zehnder AJ
    J Bacteriol; 1994 May; 176(9):2670-6. PubMed ID: 8169217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of glutamine transport in sarcolemmal vesicles from rat skeletal muscle.
    Ahmed A; Taylor PM; Rennie MJ
    Am J Physiol; 1990 Aug; 259(2 Pt 1):E284-91. PubMed ID: 2116727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE; Peran S
    Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of Na+-dependent hexose transport in OK, an established renal epithelial cell line.
    Van den Bosch L; De Smedt H; Borghgraef R
    Biochim Biophys Acta; 1989 Feb; 979(1):91-8. PubMed ID: 2917171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential dependence of the intestinal Na+-dependent sugar transporter.
    Kimmich GA; Randles J; Restrepo D; Montrose M
    Ann N Y Acad Sci; 1985; 456():63-76. PubMed ID: 3911844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of glibenclamide on glycylsarcosine transport by the rat peptide transporters PEPT1 and PEPT2.
    Sawada K; Terada T; Saito H; Hashimoto Y; Inui K
    Br J Pharmacol; 1999 Nov; 128(6):1159-64. PubMed ID: 10578127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid inhibition of bile acid uptake by isolated rat hepatocytes: relationship to dissipation of transmembrane Na+ gradient.
    Blitzer BL; Ratoosh SL; Donovan CB
    Am J Physiol; 1983 Sep; 245(3):G399-403. PubMed ID: 6614184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line.
    Moran A; Handler JS; Turner RJ
    Am J Physiol; 1982 Nov; 243(5):C293-8. PubMed ID: 7137338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA; Mason DK; Young JD
    Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.