These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7943429)

  • 1. Interactions between effects of W-7, insulin, and hypoxia on glucose transport in skeletal muscle.
    Youn JH; Gulve EA; Henriksen EJ; Holloszy JO
    Am J Physiol; 1994 Oct; 267(4 Pt 2):R888-94. PubMed ID: 7943429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.
    Youn JH; Gulve EA; Holloszy JO
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C555-61. PubMed ID: 2003578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium.
    Henriksen EJ; Rodnick KJ; Holloszy JO
    J Biol Chem; 1989 Dec; 264(36):21536-43. PubMed ID: 2600081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of glucose transport in skeletal muscle by hypoxia.
    Cartee GD; Douen AG; Ramlal T; Klip A; Holloszy JO
    J Appl Physiol (1985); 1991 Apr; 70(4):1593-600. PubMed ID: 2055841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose.
    Gulve EA; Cartee GD; Zierath JR; Corpus VM; Holloszy JO
    Am J Physiol; 1990 Nov; 259(5 Pt 1):E685-91. PubMed ID: 2240207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phenylarsine oxide on stimulation of glucose transport in rat skeletal muscle.
    Henriksen EJ; Holloszy JO
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C648-53. PubMed ID: 2185640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of alkaline pH on the stimulation of glucose transport in rat skeletal muscle.
    Ren JM; Youn JH; Gulve EA; Henriksen EJ; Holloszy JO
    Biochim Biophys Acta; 1993 Feb; 1145(2):199-204. PubMed ID: 8431452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise increases susceptibility of muscle glucose transport to activation by various stimuli.
    Cartee GD; Holloszy JO
    Am J Physiol; 1990 Feb; 258(2 Pt 1):E390-3. PubMed ID: 2305881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperglycemia activates glucose transport in rat skeletal muscle via a Ca(2+)-dependent mechanism.
    Nolte LA; Rincón J; Wahlström EO; Craig BW; Zierath JR; Wallberg-Henriksson H
    Diabetes; 1995 Nov; 44(11):1345-8. PubMed ID: 7589835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of glucose transport in rat muscle: effects of insulin and contractions.
    Ploug T; Galbo H; Vinten J; Jørgensen M; Richter EA
    Am J Physiol; 1987 Jul; 253(1 Pt 1):E12-20. PubMed ID: 3300362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of System A amino-acid transport activity by phospholipase C and cAMP-inducing agents in skeletal muscle: modulation of insulin action.
    Gumà A; Viñals F; Testar X; Palacín M; Zorzano A
    Biochim Biophys Acta; 1993 Mar; 1176(1-2):155-61. PubMed ID: 8384002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose transport into rat skeletal muscle: interaction between exercise and insulin.
    Wallberg-Henriksson H; Constable SH; Young DA; Holloszy JO
    J Appl Physiol (1985); 1988 Aug; 65(2):909-13. PubMed ID: 3049515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. W-7 specifically inhibits insulin-induced increase in glucose transport.
    Ishibashi O; Kobayashi M; Sasaoka T; Sugibayashi M; Shigeta Y
    Diabetes Res Clin Pract; 1989 Feb; 6(2):109-13. PubMed ID: 2647441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium increases susceptibility of muscle glucose transport to stimulation by various agents.
    Tabata I; Schluter J; Gulve EA; Holloszy JO
    Diabetes; 1994 Jul; 43(7):903-7. PubMed ID: 8013755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human islet amyloid polypeptide at pharmacological levels inhibits insulin and phorbol ester-stimulated glucose transport in in vitro incubated human muscle strips.
    Zierath JR; Galuska D; Engström A; Johnson KH; Betsholtz C; Westermark P; Wallberg-Henriksson H
    Diabetologia; 1992 Jan; 35(1):26-31. PubMed ID: 1541378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle glucose transport: interactions of in vitro contractions, insulin, and exercise.
    Constable SH; Favier RJ; Cartee GD; Young DA; Holloszy JO
    J Appl Physiol (1985); 1988 Jun; 64(6):2329-32. PubMed ID: 3136124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise.
    Cartee GD; Young DA; Sleeper MD; Zierath J; Wallberg-Henriksson H; Holloszy JO
    Am J Physiol; 1989 Apr; 256(4 Pt 1):E494-9. PubMed ID: 2650561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin regulation of sugar transport in giant muscle fibres of the barnacle.
    Baker PF; Carruthers A
    J Physiol; 1983 Mar; 336():397-431. PubMed ID: 6308227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-peptide stimulates glucose transport in isolated human skeletal muscle independent of insulin receptor and tyrosine kinase activation.
    Zierath JR; Handberg A; Tally M; Wallberg-Henriksson H
    Diabetologia; 1996 Mar; 39(3):306-13. PubMed ID: 8721776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin action on glucose transport in isolated skeletal muscle from patients with liver cirrhosis.
    Johansson U; Eriksson LS; Galuska D; Zierath JR; Wallberg-Henriksson H
    Scand J Gastroenterol; 1994 Jan; 29(1):71-6. PubMed ID: 8128180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.