These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 7943544)
1. Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. Beck LR; Rodriguez MH; Dister SW; Rodriguez AD; Rejmankova E; Ulloa A; Meza RA; Roberts DR; Paris JF; Spanner MA Am J Trop Med Hyg; 1994 Sep; 51(3):271-80. PubMed ID: 7943544 [TBL] [Abstract][Full Text] [Related]
2. Assessment of a remote sensing-based model for predicting malaria transmission risk in villages of Chiapas, Mexico. Beck LR; Rodriguez MH; Dister SW; Rodriguez AD; Washino RK; Roberts DR; Spanner MA Am J Trop Med Hyg; 1997 Jan; 56(1):99-106. PubMed ID: 9063370 [TBL] [Abstract][Full Text] [Related]
3. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico. Pope KO; Rejmankova E; Savage HM; Arredondo-Jimenez JI; Rodriguez MH; Roberts DR Ecol Appl; 1994 Feb; 4(1):81-90. PubMed ID: 11539870 [TBL] [Abstract][Full Text] [Related]
4. Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in Southern France. Tran A; Ponçon N; Toty C; Linard C; Guis H; Ferré JB; Lo Seen D; Roger F; de la Rocque S; Fontenille D; Baldet T Int J Health Geogr; 2008 Feb; 7():9. PubMed ID: 18302749 [TBL] [Abstract][Full Text] [Related]
5. Mapping of risk prone areas of kala-azar (Visceral leishmaniasis) in parts of Bihar State, India: an RS and GIS approach. Sudhakar S; Srinivas T; Palit A; Kar SK; Battacharya SK J Vector Borne Dis; 2006 Sep; 43(3):115-22. PubMed ID: 17024860 [TBL] [Abstract][Full Text] [Related]
6. Application of geographic information technology in determining risk of eastern equine encephalomyelitis virus transmission. Moncayo AC; Edman JD; Finn JT J Am Mosq Control Assoc; 2000 Mar; 16(1):28-35. PubMed ID: 10757488 [TBL] [Abstract][Full Text] [Related]
7. Landscape surrounding human settlements and Anopheles albimanus (Diptera: Culicidae) abundance in Southern Chiapas, Mexico. Rodriguez AD; Rodriguez MH; Hernandez JE; Dister SW; Beck LR; Rejmankova E; Roberts DR J Med Entomol; 1996 Jan; 33(1):39-48. PubMed ID: 8906903 [TBL] [Abstract][Full Text] [Related]
8. Prediction of villages at risk for filariasis transmission in the Nile Delta using remote sensing and geographic information system technologies. Hassan AN; Beck LR; Dister S J Egypt Soc Parasitol; 1998 Apr; 28(1):75-87. PubMed ID: 9617045 [TBL] [Abstract][Full Text] [Related]
9. Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. Diuk-Wasser MA; Touré MB; Dolo G; Bagayoko M; Sogoba N; Sissoko I; Traoré SF; Taylor CE Am J Trop Med Hyg; 2007 May; 76(5):869-74. PubMed ID: 17488907 [TBL] [Abstract][Full Text] [Related]
10. Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia. Ahmad R; Ali WN; Nor ZM; Ismail Z; Hadi AA; Ibrahim MN; Lim LH Malar J; 2011 Dec; 10():361. PubMed ID: 22166101 [TBL] [Abstract][Full Text] [Related]
11. Local-scale variation in malaria infection amongst rural Gambian children estimated by satellite remote sensing. Thomas CJ; Lindsay SW Trans R Soc Trop Med Hyg; 2000; 94(2):159-63. PubMed ID: 10897355 [TBL] [Abstract][Full Text] [Related]
12. Seasonal malaria vector and transmission dynamics in western Burkina Faso. Epopa PS; Collins CM; North A; Millogo AA; Benedict MQ; Tripet F; Diabate A Malar J; 2019 Apr; 18(1):113. PubMed ID: 30940141 [TBL] [Abstract][Full Text] [Related]
14. Anopheles vestitipennis, the probable vector of Plasmodium vivax in the Lacandon forest of Chiapas, México. Loyola EG; Arredondo JI; Rodríguez MH; Brown DN; Vaca-Marin MA Trans R Soc Trop Med Hyg; 1991; 85(2):171-4. PubMed ID: 1887463 [TBL] [Abstract][Full Text] [Related]
15. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach. Schurich JA; Kumar S; Eisen L; Moore CG J Am Mosq Control Assoc; 2014 Mar; 30(1):7-20. PubMed ID: 24772672 [TBL] [Abstract][Full Text] [Related]
16. GIS-based prediction of malaria risk in Egypt. Hassan AN; Kenawy MA; Kamal H; Abdel Sattar AA; Sowilem MM East Mediterr Health J; 2003 Jul; 9(4):548-58. PubMed ID: 15748052 [TBL] [Abstract][Full Text] [Related]
17. Bionomics and systematics of the oriental Anopheles sundaicus complex in relation to malaria transmission and vector control. Dusfour I; Harbach RE; Manguin S Am J Trop Med Hyg; 2004 Oct; 71(4):518-24. PubMed ID: 15516652 [TBL] [Abstract][Full Text] [Related]
18. Use of remote sensing and geographic information systems to predict locations of Anopheles darlingi-positive breeding sites within the Sibun River in Belize, Central America. Achee NL; Grieco JP; Masuoka P; Andre RG; Roberts DR; Thomas J; Briceno I; King R; Rejmankova E J Med Entomol; 2006 Mar; 43(2):382-92. PubMed ID: 16619625 [TBL] [Abstract][Full Text] [Related]
19. Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data. Dlamini SN; Franke J; Vounatsou P Geospat Health; 2015 Jun; 10(1):302. PubMed ID: 26054511 [TBL] [Abstract][Full Text] [Related]
20. The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review. Palaniyandi M J Vector Borne Dis; 2012 Dec; 49(4):197-204. PubMed ID: 23428518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]