These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 7944166)

  • 1. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of vocal fold mucosal wave velocity in an in vivo canine model.
    Sloan SH; Berke GS; Gerratt BR; Kreiman J; Ye M
    Laryngoscope; 1993 Sep; 103(9):947-53. PubMed ID: 8361313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laryngeal biomechanics: an overview of mucosal wave mechanics.
    Berke GS; Gerratt BR
    J Voice; 1993 Jun; 7(2):123-8. PubMed ID: 8353625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of asymmetric vocal fold stiffness on traveling wave velocity in the canine larynx.
    Sloan SH; Berke GS; Gerratt BR
    Otolaryngol Head Neck Surg; 1992 Oct; 107(4):516-26. PubMed ID: 1437183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical measurement of mucosal wave velocity using simultaneous photoglottography and laryngostroboscopy.
    Hanson DG; Jiang J; D'Agostino M; Herzon G
    Ann Otol Rhinol Laryngol; 1995 May; 104(5):340-9. PubMed ID: 7747903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of the effects of thyroarytenoid muscle activity upon pliability of vocal fold mucosa in an in vivo canine model.
    Yumoto E; Kadota Y
    Laryngoscope; 1997 Feb; 107(2):266-72. PubMed ID: 9023254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model.
    Slavit DH; McCaffrey TV; Yanagi E
    Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function of the interarytenoid muscle in a canine laryngeal model.
    Nasri S; Beizai P; Sercarz JA; Kreiman J; Graves MC; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Dec; 103(12):975-82. PubMed ID: 7993010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pressure-regulated model of normal and pathologic phonation.
    Nasri S; Namazie A; Kreiman J; Sercarz JA; Gerratt BR; Berke GS
    Otolaryngol Head Neck Surg; 1994 Dec; 111(6):807-15. PubMed ID: 7991263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomy and physiology of the larynx.
    Noordzij JP; Ossoff RH
    Otolaryngol Clin North Am; 2006 Feb; 39(1):1-10. PubMed ID: 16469651
    [No Abstract]   [Full Text] [Related]  

  • 15. Orthotopic laryngeal transplantation: is it time?
    Berke GS; Ye M; Block RM; Sloan S; Sercarz J
    Laryngoscope; 1993 Aug; 103(8):857-64. PubMed ID: 8361288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Speech: A Restricted Use of the Mammalian Larynx.
    Titze IR
    J Voice; 2017 Mar; 31(2):135-141. PubMed ID: 27397113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative measurement of mucosal wave by high-speed photography in excised larynges.
    Jiang JJ; Yumoto E; Lin SJ; Kadota Y; Kurokawa H; Hanson DG
    Ann Otol Rhinol Laryngol; 1998 Feb; 107(2):98-103. PubMed ID: 9486902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of laryngeal nerve stimulation on phonation: a glottographic study using an in vivo canine model.
    Moore DM; Berke GS
    J Acoust Soc Am; 1988 Feb; 83(2):705-15. PubMed ID: 3351129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the Subharmonic Mucosal Wave in Excised Larynges via Digital Kymography.
    Zhang Y; Huang N; Calawerts W; Li L; Maytag AL; Jiang JJ
    J Voice; 2017 Jan; 31(1):123.e7-123.e13. PubMed ID: 27105856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Formation of the laryngeal sound in the phonation].
    Chouard CH
    Presse Med (1893); 1969 Mar; 77(16):583-6. PubMed ID: 5783379
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.