These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7944338)

  • 21. Substrate mimetics in protease catalysis: characteristics, kinetics, and synthetic utility.
    Bordusa F
    Curr Protein Pept Sci; 2002 Apr; 3(2):159-80. PubMed ID: 12188901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase.
    Nicoll AJ; Allemann RK
    Org Biomol Chem; 2004 Aug; 2(15):2175-80. PubMed ID: 15280952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enantioselective ester hydrolysis catalyzed by imprinted polymers.
    Sellergren B; Karmalkar RN; Shea KJ
    J Org Chem; 2000 Jun; 65(13):4009-27. PubMed ID: 10866620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Converting trypsin to chymotrypsin: the role of surface loops.
    Hedstrom L; Szilagyi L; Rutter WJ
    Science; 1992 Mar; 255(5049):1249-53. PubMed ID: 1546324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and high-resolution structure of a β³-peptide bundle catalyst.
    Wang PS; Nguyen JB; Schepartz A
    J Am Chem Soc; 2014 May; 136(19):6810-3. PubMed ID: 24802883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fairly marked enantioselectivity for the hydrolysis of amino acid esters by chemically modified enzymes.
    Yano Y; Shimada K; Okai J; Goto K; Matsumoto Y; Ueoka R
    J Org Chem; 2003 Feb; 68(4):1314-8. PubMed ID: 12585870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alkaline pH dependence of delta-chymotrypsin-catalyzed hydrolysis of specific substrates.
    Valenzuela P; Bender ML
    Proc Natl Acad Sci U S A; 1969 Aug; 63(4):1214-21. PubMed ID: 5260922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trypsin-specific acyl-4-guanidinophenyl esters for alpha-chymotrypsin-catalysed reactions computational predictions, hydrolyses, and peptide bond formation.
    Günther R; Thust S; Hofmann HJ; Bordusa F
    Eur J Biochem; 2000 Jun; 267(12):3496-501. PubMed ID: 10848965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pressure on the pre-steady-state kinetics of the hydrolysis of anilide substrates catalyzed by alpha-chymotrypsin.
    Makimoto S; Taniguchi Y
    Biochim Biophys Acta; 1987 Aug; 914(3):304-7. PubMed ID: 3620478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A peptide dendrimer enzyme model with a single catalytic site at the core.
    Javor S; Delort E; Darbre T; Reymond JL
    J Am Chem Soc; 2007 Oct; 129(43):13238-46. PubMed ID: 17924626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Nonspecific trypsin substrates in the enzymatic synthesis of peptides].
    Mitin IuV; Zapevalova NP; Zaĭtseva OR; Gorbunova EIu
    Bioorg Khim; 1994 Mar; 20(3):310-5. PubMed ID: 8166758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pressure effects on enzyme reactions in mainly organic media: alpha-chymotrypsin in reversed micelles of Aerosol OT in octane.
    Mozhaev VV; Bec N; Balny C
    Biochem Mol Biol Int; 1994 Aug; 34(1):191-9. PubMed ID: 7531534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics and specificity of serine proteases in peptide synthesis catalyzed in organic solvents.
    Gaertner H; Puigserver A
    Eur J Biochem; 1989 Apr; 181(1):207-13. PubMed ID: 2653820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The differential specificity of chymotrypsin A and B is determined by amino acid 226.
    Hudáky P; Kaslik G; Venekei I; Gráf L
    Eur J Biochem; 1999 Jan; 259(1-2):528-33. PubMed ID: 9914536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crossreactivity, efficiency and catalytic specificity of an esterase-like antibody.
    Gigant B; Charbonnier JB; Eshhar Z; Green BS; Knossow M
    J Mol Biol; 1998 Dec; 284(3):741-50. PubMed ID: 9826512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-directed mutagenesis of a novel serine arylesterase from Vibrio mimicus identifies residues essential for catalysis.
    Chang RC; Chen JC; Shaw JF
    Biochem Biophys Res Commun; 1996 Apr; 221(2):477-83. PubMed ID: 8619880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial Esterase for Cooperative Catalysis of Ester Hydrolysis at pH 7.
    Bose I; Bahrami F; Zhao Y
    Mater Today Chem; 2023 Jun; 30():. PubMed ID: 37997572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetically controlled synthesis of dipeptides using ficin as biocatalyst.
    Monter B; Herzog B; Stehle P; Fürst P
    Biotechnol Appl Biochem; 1991 Oct; 14(2):183-91. PubMed ID: 1760130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel.
    Yan X; Wang J; Sun Y; Zhu J; Wu S
    Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The kinetics of hydrolysis of some extended N-aminoacyl-L-phenylalanine methyl esters by bovine chymotrypsin A-alpha. Evidence for enzyme subsite S5.
    Hill CR; Tomalin G
    Biochim Biophys Acta; 1981 Jul; 660(1):65-72. PubMed ID: 7272314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.