These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7944347)

  • 21. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids.
    Hirschmann R; Smith AB; Taylor CM; Benkovic PA; Taylor SD; Yager KM; Sprengeler PA; Benkovic SJ
    Science; 1994 Jul; 265(5169):234-7. PubMed ID: 8023141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient and selective p-nitrophenyl-ester-hydrolyzing antibodies elicited by a p-nitrobenzyl phosphonate hapten.
    Tawfik DS; Lindner AB; Chap R; Eshhar Z; Green BS
    Eur J Biochem; 1997 Mar; 244(2):619-26. PubMed ID: 9119032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An investigation of antibody acyl hydrolysis catalysis using a large set of related haptens.
    Odenbaugh AL; Helms ED; Iverson BL
    Bioorg Med Chem; 2000 Feb; 8(2):413-26. PubMed ID: 10722164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibody-catalyzed rearrangement of the peptide bond.
    Gibbs RA; Taylor S; Benkovic SJ
    Science; 1992 Oct; 258(5083):803-5. PubMed ID: 1439788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K; Zhou B; Houk KN; Lerner RA; Shevlin CG; Wilson IA
    Biochemistry; 1999 Jun; 38(22):7062-74. PubMed ID: 10353817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monoclonal antibodies distinguish synthetic peptides that differ in one chemical group.
    Motté P; Alberici G; Ait-Abdellah M; Bellet D
    J Immunol; 1987 May; 138(10):3332-8. PubMed ID: 2437187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate-assisted antibody catalysis.
    Deng S; Bharat N; de Prada P; Landry DW
    Org Biomol Chem; 2004 Feb; 2(3):288-90. PubMed ID: 14747854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic antibody activity elicited by active immunisation. Evidence for natural variation involving preferential stabilization of the transition state.
    Gallacher G; Jackson CS; Searcey M; Goel R; Mellor GW; Smith CZ; Brocklehurst K
    Eur J Biochem; 1993 May; 214(1):197-207. PubMed ID: 8508792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward antibody-catalyzed hydrolysis of organophosphorus poisons.
    Vayron P; Renard PY; Taran F; Créminon C; Frobert Y; Grassi J; Mioskowski C
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7058-63. PubMed ID: 10860971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for the selection of catalytic antibodies against organophosphorus nerve agents.
    Smirnov I; Belogurov A; Friboulet A; Masson P; Gabibov A; Renard PY
    Chem Biol Interact; 2013 Mar; 203(1):196-201. PubMed ID: 23123255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic activity of anti-ground state antibodies, antibody subunits, and human autoantibodies.
    Paul S
    Appl Biochem Biotechnol; 1994; 47(2-3):241-53; discussion 253-5. PubMed ID: 7944341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyridoxal-5'-phosphate-dependent catalytic antibodies.
    Gramatikova S; Mouratou B; Stetefeld J; Mehta PK; Christen P
    J Immunol Methods; 2002 Nov; 269(1-2):99-110. PubMed ID: 12379355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Innate antibody catalysis.
    Gololobov G; Sun M; Paul S
    Mol Immunol; 1999 Dec; 36(18):1215-22. PubMed ID: 10684961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic digestion of human tumor necrosis factor-α by antibody heavy chain.
    Hifumi E; Higashi K; Uda T
    FEBS J; 2010 Sep; 277(18):3823-32. PubMed ID: 20718866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploiting antibodies as catalysts: potential therapeutic applications.
    Tellier C
    Transfus Clin Biol; 2002 Jan; 9(1):1-8. PubMed ID: 11889895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective chemotherapeutic strategies using catalytic antibodies: a common pro-moiety for antibody-directed abzyme prodrug therapy.
    Kakinuma H; Fujii I; Nishi Y
    J Immunol Methods; 2002 Nov; 269(1-2):269-81. PubMed ID: 12379367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a monoclonal antibody produced in an attempt to mimic the active site of HIV aspartyl protease using haptens based on inhibitor models.
    Hanin V; Campagne JM; Dominice C; Mani JC; Dufour MN; Jouin P; Pau B
    J Immunol Methods; 1994 Aug; 173(2):139-47. PubMed ID: 8046248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small hydroxyethylene-based peptidomimetics inhibiting both HIV-1 and C. albicans aspartic proteases.
    Tossi A; Benedetti F; Norbedo S; Skrbec D; Berti F; Romeo D
    Bioorg Med Chem; 2003 Nov; 11(22):4719-27. PubMed ID: 14556787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of cathepsins D and G and EC 3.4.24.15 as candidate beta-secretase proteases using peptide and amyloid precursor protein substrates.
    Brown AM; Tummolo DM; Spruyt MA; Jacobsen JS; Sonnenberg-Reines J
    J Neurochem; 1996 Jun; 66(6):2436-45. PubMed ID: 8632167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.