BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 7944387)

  • 1. The oxidation of alpha-tocopherol and trolox by peroxynitrite.
    Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1994 Oct; 314(1):153-8. PubMed ID: 7944387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of peroxynitrite with gamma-tocopherol.
    Hoglen NC; Waller SC; Sipes IG; Liebler DC
    Chem Res Toxicol; 1997 Apr; 10(4):401-7. PubMed ID: 9114976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homolytic pathways drive peroxynitrite-dependent Trolox C oxidation.
    Botti H; Trujillo M; Batthyány C; Rubbo H; Ferrer-Sueta G; Radi R
    Chem Res Toxicol; 2004 Oct; 17(10):1377-84. PubMed ID: 15487899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquinone-dependent recycling of vitamin E radicals by superoxide.
    Stoyanovsky DA; Osipov AN; Quinn PJ; Kagan VE
    Arch Biochem Biophys; 1995 Nov; 323(2):343-51. PubMed ID: 7487097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NO-redox paradox: direct oxidation of alpha-tocopherol and alpha-tocopherol-mediated oxidation of ascorbate.
    Gorbunov NV; Osipov AN; Sweetland MA; Day BW; Elsayed NM; Kagan VE
    Biochem Biophys Res Commun; 1996 Feb; 219(3):835-41. PubMed ID: 8645266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation.
    Laranjinha J; Cadenas E
    IUBMB Life; 1999 Jul; 48(1):57-65. PubMed ID: 10791916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addition products of alpha-tocopherol with lipid-derived free radicals.
    Yamauchi R
    Vitam Horm; 2007; 76():309-27. PubMed ID: 17628179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of vitamin E during iron-catalyzed lipid peroxidation: evidence for electron-transfer reactions of the tocopheroxyl radical.
    Liebler DC; Burr JA
    Biochemistry; 1992 Sep; 31(35):8278-84. PubMed ID: 1326326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of metabolism in the antioxidant function of vitamin E.
    Liebler DC
    Crit Rev Toxicol; 1993; 23(2):147-69. PubMed ID: 8329114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin E chemistry. Studies into initial oxidation intermediates of alpha-tocopherol: disproving the involvement of 5a-C-centered "chromanol methide" radicals.
    Rosenau T; Kloser E; Gille L; Mazzini F; Netscher T
    J Org Chem; 2007 Apr; 72(9):3268-81. PubMed ID: 17391045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transformation products of vitamin E and its analog--chroman C1 in an oxidizing ethyl linoleate medium].
    Zakharova EI; Shuaipov KA; Chudinova VV; Alekseev SM; Evstigneeva RP
    Bioorg Khim; 1992 Jul; 18(7):985-95. PubMed ID: 1445431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UVB induced photooxidation of vitamin E.
    Kramer KA; Liebler DC
    Chem Res Toxicol; 1997 Feb; 10(2):219-24. PubMed ID: 9049434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction between nitric oxide and alpha-tocopherol: a reappraisal.
    Hogg N; Singh RJ; Goss SP; Kalyanaraman B
    Biochem Biophys Res Commun; 1996 Jul; 224(3):696-702. PubMed ID: 8713109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically controlled chemically reversible transformation of alpha-tocopherol (vitamin E) into its phenoxonium cation.
    Williams LL; Webster RD
    J Am Chem Soc; 2004 Oct; 126(39):12441-50. PubMed ID: 15453778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of natural phenolic compounds regenerating alpha-tocopherol from alpha-tocopheroxyl radical.
    Pazos M; Andersen ML; Medina I; Skibsted LH
    J Agric Food Chem; 2007 May; 55(9):3661-6. PubMed ID: 17419638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of oxygen, vitamin E, and carotenoids in radical reactions following oxidation of Trp and Tyr residues in native HDL3 apolipoproteins. Comparison with LDL. A time-resolved spectroscopic analysis.
    Boullier A; Mazière JC; Filipe P; Patterson LK; Bartels DM; Hug GL; Freitas JP; Santus R; Morlière P
    Biochemistry; 2007 May; 46(17):5226-37. PubMed ID: 17411073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of low levels of water in the electrochemical oxidation of α-tocopherol (vitamin E) and other phenols in acetonitrile.
    Tan YS; Chen S; Hong WM; Kan JM; Kwek ES; Lim SY; Lim ZH; Tessensohn ME; Zhang Y; Webster RD
    Phys Chem Chem Phys; 2011 Jul; 13(28):12745-54. PubMed ID: 21670827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of alpha-tocopherol (vitamin E) and related chromanol model compounds into their phenoxonium ions by chemical oxidation with the nitrosonium cation.
    Lee SB; Lin CY; Gill PM; Webster RD
    J Org Chem; 2005 Dec; 70(25):10466-73. PubMed ID: 16323859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One- and two-electron oxidation reactions of trolox by peroxynitrite.
    Priyadarsini KI; Kapoor S; Naik DB
    Chem Res Toxicol; 2001 May; 14(5):567-71. PubMed ID: 11368556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant properties of natural and synthetic chromanol derivatives: study by fast kinetics and electron spin resonance spectroscopy.
    Gregor W; Grabner G; Adelwöhrer C; Rosenau T; Gille L
    J Org Chem; 2005 Apr; 70(9):3472-83. PubMed ID: 15844980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.