These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 7945207)
1. Iron incorporation into ferritins: evidence for the transfer of monomeric Fe(III) between ferritin molecules and for the formation of an unusual mineral in the ferritin of Escherichia coli. Bauminger ER; Treffry A; Hudson AJ; Hechel D; Hodson NW; Andrews SC; Levi S; Nowik I; Arosio P; Guest JR Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):813-20. PubMed ID: 7945207 [TBL] [Abstract][Full Text] [Related]
2. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis. Treffry A; Bauminger ER; Hechel D; Hodson NW; Nowik I; Yewdall SJ; Harrison PM Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):721-8. PubMed ID: 7506527 [TBL] [Abstract][Full Text] [Related]
3. Stages in iron storage in the ferritin of Escherichia coli (EcFtnA): analysis of Mössbauer spectra reveals a new intermediate. Bauminger ER; Treffry A; Quail MA; Zhao Z; Nowik I; Harrison PM Biochemistry; 1999 Jun; 38(24):7791-802. PubMed ID: 10387019 [TBL] [Abstract][Full Text] [Related]
4. Mössbauer spectroscopic investigation of structure-function relations in ferritins. Bauminger ER; Harrison PM; Hechel D; Nowik I; Treffry A Biochim Biophys Acta; 1991 Dec; 1118(1):48-58. PubMed ID: 1764477 [TBL] [Abstract][Full Text] [Related]
5. Iron (II) oxidation and early intermediates of iron-core formation in recombinant human H-chain ferritin. Bauminger ER; Harrison PM; Hechel D; Hodson NW; Nowik I; Treffry A; Yewdall SJ Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):709-19. PubMed ID: 8280069 [TBL] [Abstract][Full Text] [Related]
6. Origin of the unusual kinetics of iron deposition in human H-chain ferritin. Bou-Abdallah F; Zhao G; Mayne HR; Arosio P; Chasteen ND J Am Chem Soc; 2005 Mar; 127(11):3885-93. PubMed ID: 15771525 [TBL] [Abstract][Full Text] [Related]
7. Influence of site-directed modifications on the formation of iron cores in ferritin. Wade VJ; Levi S; Arosio P; Treffry A; Harrison PM; Mann S J Mol Biol; 1991 Oct; 221(4):1443-52. PubMed ID: 1942061 [TBL] [Abstract][Full Text] [Related]
8. Formation of iron(III)-tyrosinate is the fastest reaction observed in ferritin. Waldo GS; Theil EC Biochemistry; 1993 Dec; 32(48):13262-9. PubMed ID: 8241182 [TBL] [Abstract][Full Text] [Related]
9. Iron (III) can be transferred between ferritin molecules. Bauminger ER; Harrison PM; Hechel D; Nowik I; Treffry A Proc Biol Sci; 1991 Jun; 244(1311):211-7. PubMed ID: 1679940 [TBL] [Abstract][Full Text] [Related]
10. Formation of an Fe(III)-tyrosinate complex during biomineralization of H-subunit ferritin. Waldo GS; Ling J; Sanders-Loehr J; Theil EC Science; 1993 Feb; 259(5096):796-8. PubMed ID: 8430332 [TBL] [Abstract][Full Text] [Related]
11. Iron(II) oxidation by H chain ferritin: evidence from site-directed mutagenesis that a transient blue species is formed at the dinuclear iron center. Treffry A; Zhao Z; Quail MA; Guest JR; Harrison PM Biochemistry; 1995 Nov; 34(46):15204-13. PubMed ID: 7578135 [TBL] [Abstract][Full Text] [Related]
12. Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation. Levi S; Santambrogio P; Corsi B; Cozzi A; Arosio P Biochem J; 1996 Jul; 317 ( Pt 2)(Pt 2):467-73. PubMed ID: 8713073 [TBL] [Abstract][Full Text] [Related]
13. Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Pereira AS; Small W; Krebs C; Tavares P; Edmondson DE; Theil EC; Huynh BH Biochemistry; 1998 Jul; 37(28):9871-6. PubMed ID: 9665690 [TBL] [Abstract][Full Text] [Related]
14. Iron Oxidation and Core Formation in Recombinant Heteropolymeric Human Ferritins. Mehlenbacher M; Poli M; Arosio P; Santambrogio P; Levi S; Chasteen ND; Bou-Abdallah F Biochemistry; 2017 Aug; 56(30):3900-3912. PubMed ID: 28636371 [TBL] [Abstract][Full Text] [Related]
15. mu-1,2-peroxo diferric complex formation in horse spleen ferritin. A mixed H/L-subunit heteropolymer. Zhao G; Su M; Chasteen ND J Mol Biol; 2005 Sep; 352(2):467-77. PubMed ID: 16095616 [TBL] [Abstract][Full Text] [Related]
16. Dinuclear center of ferritin: studies of iron binding and oxidation show differences in the two iron sites. Treffry A; Zhao Z; Quail MA; Guest JR; Harrison PM Biochemistry; 1997 Jan; 36(2):432-41. PubMed ID: 9003196 [TBL] [Abstract][Full Text] [Related]
17. Mineralization in ferritin: an efficient means of iron storage. Chasteen ND; Harrison PM J Struct Biol; 1999 Jun; 126(3):182-94. PubMed ID: 10441528 [TBL] [Abstract][Full Text] [Related]
18. Rapid and parallel formation of Fe3+ multimers, including a trimer, during H-type subunit ferritin mineralization. Pereira AS; Tavares P; Lloyd SG; Danger D; Edmondson DE; Theil EC; Huynh BH Biochemistry; 1997 Jun; 36(25):7917-27. PubMed ID: 9201937 [TBL] [Abstract][Full Text] [Related]
19. The iron redox and hydrolysis chemistry of the ferritins. Bou-Abdallah F Biochim Biophys Acta; 2010 Aug; 1800(8):719-31. PubMed ID: 20382203 [TBL] [Abstract][Full Text] [Related]
20. Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Santambrogio P; Levi S; Cozzi A; Corsi B; Arosio P Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):139-44. PubMed ID: 8660274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]