These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7945256)

  • 41. Bisphosphonate-osteoclasts: changes in osteoclast morphology and function induced by antiresorptive nitrogen-containing bisphosphonate treatment in osteoporosis patients.
    Jobke B; Milovanovic P; Amling M; Busse B
    Bone; 2014 Feb; 59():37-43. PubMed ID: 24211427
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antitumor effects of bisphosphonates.
    Green JR
    Cancer; 2003 Feb; 97(3 Suppl):840-7. PubMed ID: 12548584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of the kinetic equilibrium between aminoacyl-tRNA formation and hydrolysis in inhibition assays of aminoacyl-tRNA synthetase.
    Jordan DB; Abell LM; Picollelli MA; Senator DR; Mason JL; Rogers MJ; Rendina AR
    Anal Biochem; 2001 Nov; 298(1):133-6. PubMed ID: 11673908
    [No Abstract]   [Full Text] [Related]  

  • 44. Inhibition of aminoacyl-transfer RNA formation by low-molecular substances from melanoma extract.
    Ishikawa K; Ohno T; Numazaki M; Tsutsumi K; Suzuki J; Hariu A; Tomita Y; Kato T; Seiji M
    Gan; 1984 Jan; 75(1):43-52. PubMed ID: 6327450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Specific changes in lactate levels, lactate dehydrogenase patterns and cytochrome b559 in Dictyostelium discoideum caused by queuine.
    Schachner E; Aschhoff HJ; Kersten H
    Eur J Biochem; 1984 Mar; 139(3):481-7. PubMed ID: 6698026
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemical and molecular mechanisms of action of bisphosphonates.
    Rogers MJ; Crockett JC; Coxon FP; Mönkkönen J
    Bone; 2011 Jul; 49(1):34-41. PubMed ID: 21111853
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Mechanism of functioning of aminoacyl-tRNA-synthetases].
    Malygin EG; Kiselev LL
    Mol Biol (Mosk); 1984; 18(5):1264-86. PubMed ID: 6390174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy.
    Russell RG; Xia Z; Dunford JE; Oppermann U; Kwaasi A; Hulley PA; Kavanagh KL; Triffitt JT; Lundy MW; Phipps RJ; Barnett BL; Coxon FP; Rogers MJ; Watts NB; Ebetino FH
    Ann N Y Acad Sci; 2007 Nov; 1117():209-57. PubMed ID: 18056045
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Aminoacyl-tRNA synthetases (codases) and their noncanonical functions].
    Kiselev LL
    Mol Biol (Mosk); 1990; 24(6):1445-73. PubMed ID: 2094804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biosynthesis of phosphatidylinositol in the cellular slime mould Dictyostelium discoideum by a CTP-independent pathway [proceedings].
    Machon A; North MJ; Brophy PJ
    Biochem Soc Trans; 1980 Jun; 8(3):375-6. PubMed ID: 7399104
    [No Abstract]   [Full Text] [Related]  

  • 51. Growth inhibition of macrophage-like and other cell types by liposome-encapsulated, calcium-bound, and free bisphosphonates in vitro.
    Mönkkönen J; Taskinen M; Auriola SO; Urtti A
    J Drug Target; 1994; 2(4):299-308. PubMed ID: 7858955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Degradation of ATP by membrane-bound enzymatic activities in Dictyostelium discoideum monitored by high-pressure liquid chromatography.
    Hodge JL; Rossomando EF
    Anal Biochem; 1980 Feb; 102(1):59-62. PubMed ID: 7356164
    [No Abstract]   [Full Text] [Related]  

  • 53. Synthesis of diadenosine 5',5"'-P1,P4-tetraphosphate and related compounds by plant (Lupinus luteus) seryl-tRNA and phenylalanyl-tRNA synthetases.
    Jakubowski H
    Acta Biochim Pol; 1983; 30(1):51-69. PubMed ID: 6553449
    [No Abstract]   [Full Text] [Related]  

  • 54. Reduced aminoacylation of asparagine-transfer RNA early in the developmental cycle of Dictyostelium discoideum: modification pattern and possible significance of the uncharged isoacceptor tRNAAsn3.
    Dingermann T; Ogilvie A; Pistel F; Mühlhofer W; Kersten H
    Hoppe Seylers Z Physiol Chem; 1981 Jun; 362(6):763-73. PubMed ID: 6912178
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Role of adenine nucleotides in regulating the activity of amino acyl-tRNA-synthetases].
    Khanson KP; Petrova LD
    Biokhimiia; 1972; 37(4):736-41. PubMed ID: 4673700
    [No Abstract]   [Full Text] [Related]  

  • 57. Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro.
    Carano A; Teitelbaum SL; Konsek JD; Schlesinger PH; Blair HC
    J Clin Invest; 1990 Feb; 85(2):456-61. PubMed ID: 2105340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases.
    Nordin BE; Schimmel P
    Biochemistry; 2003 Nov; 42(44):12989-97. PubMed ID: 14596614
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo synthesis of adenylylated bis(5'-nucleosidyl) tetraphosphates (Ap4N) by Escherichia coli aminoacyl-tRNA synthetases.
    Brevet A; Chen J; Lévêque F; Plateau P; Blanquet S
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8275-9. PubMed ID: 2554306
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intracellular pH control in Dictyostelium discoideum: a 31P-NMR analysis.
    Satre M; Klein G; Martin JB
    Biochimie; 1986 Dec; 68(12):1253-61. PubMed ID: 3098310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.