These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 7945269)

  • 21. A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis.
    Lidholt K; Weinke JL; Kiser CS; Lugemwa FN; Bame KJ; Cheifetz S; Massagué J; Lindahl U; Esko JD
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2267-71. PubMed ID: 1532254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of heparan sulfate. Coordination of polymer-modification reactions in a Chinese hamster ovary cell mutant defective in N-sulfotransferase.
    Bame KJ; Lidholt K; Lindahl U; Esko JD
    J Biol Chem; 1991 Jun; 266(16):10287-93. PubMed ID: 2037581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selection of COS cell mutants defective in the biosynthesis of heparan sulfate proteoglycan.
    Ishihara M; Kiefer MC; Barr PJ; Guo Y; Swiedler SJ
    Anal Biochem; 1992 Nov; 206(2):400-7. PubMed ID: 1443612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase.
    Bame KJ; Esko JD
    J Biol Chem; 1989 May; 264(14):8059-65. PubMed ID: 2524478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis of versican by rat dental pulp cells in culture.
    Yoneda S; Shibata S; Yamashita Y; Yanagishita M
    Arch Oral Biol; 2002 Jun; 47(6):435-42. PubMed ID: 12102759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of sulphated macromolecules by rabbit lens epithelium. II. Relationship to basement membrane formation.
    Heathcote JG; Bruns RR; Orkin RW
    J Cell Biol; 1984 Sep; 99(3):861-9. PubMed ID: 6236228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Basic fibroblast growth factor does not prevent heparan sulphate proteoglycan catabolism in intact cells, but it alters the distribution of the glycosaminoglycan degradation products.
    Tumova S; Hatch BA; Law DJ; Bame KJ
    Biochem J; 1999 Feb; 337 ( Pt 3)(Pt 3):471-81. PubMed ID: 9895290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural differences between heparan sulphates of proteoglycan involved in the formation of basement membranes in vivo by Lewis-lung-carcinoma-derived cloned cells with different metastatic potentials.
    Nakanishi H; Oguri K; Yoshida K; Itano N; Takenaga K; Kazama T; Yoshida A; Okayama M
    Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):215-24. PubMed ID: 1445266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subcellular localization of the sulphation reaction of heparan sulphate synthesis and transport of the proteoglycan to the cell surface in rat liver.
    Graham JM; Winterbourne DJ
    Biochem J; 1988 Jun; 252(2):437-45. PubMed ID: 2970845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abeta(1-40) prevents heparanase-catalyzed degradation of heparan sulfate glycosaminoglycans and proteoglycans in vitro. A role for heparan sulfate proteoglycan turnover in Alzheimer's disease.
    Bame KJ; Danda J; Hassall A; Tumova S
    J Biol Chem; 1997 Jul; 272(27):17005-11. PubMed ID: 9202014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of heparan sulphate metabolism by adenosine 3':5'-cyclic monophosphate in hepatocytes in culture.
    Sudhakaran PR; Sinn W; von Figura K
    Biochem J; 1980 Nov; 192(2):395-402. PubMed ID: 6263252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis and structure of the basement membrane proteoglycan containing heparan sulphate side-chains.
    Hassell JM; Noonan DM; Ledbetter SR; Laurie GW
    Ciba Found Symp; 1986; 124():204-22. PubMed ID: 2949947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and partial characterization of heparan sulphate proteoglycan from the human glomerular basement membrane.
    van den Heuvel LP; van den Born J; van de Velden TJ; Veerkamp JH; Monnens LA; Schroder CH; Berden JH
    Biochem J; 1989 Dec; 264(2):457-65. PubMed ID: 2532508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteoglycans in polarized epithelial Madin-Darby canine kidney cells.
    Svennevig K; Prydz K; Kolset SO
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):881-8. PubMed ID: 7487945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences.
    Tumova S; Woods A; Couchman JR
    J Biol Chem; 2000 Mar; 275(13):9410-7. PubMed ID: 10734086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repetitive Ser-Gly sequences enhance heparan sulfate assembly in proteoglycans.
    Zhang L; David G; Esko JD
    J Biol Chem; 1995 Nov; 270(45):27127-35. PubMed ID: 7592967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heparan sulphate proteoglycans and their polypeptide chains from BHK cells.
    Bretscher MS
    EMBO J; 1985 Aug; 4(8):1941-4. PubMed ID: 2933250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The spacing of S-domains on HS glycosaminoglycans determines whether the chain is a substrate for intracellular heparanases.
    Bame KJ; Venkatesan I; Stelling HD; Tumova S
    Glycobiology; 2000 Jul; 10(7):715-26. PubMed ID: 10910975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural properties of the heparan sulfate proteoglycans of brain.
    Ripellino JA; Margolis RU
    J Neurochem; 1989 Mar; 52(3):807-12. PubMed ID: 2521892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heparan sulfate chains with antimitogenic properties arise from mesangial cell-surface proteoglycans.
    Wang A; Miralem T; Templeton DM
    Metabolism; 1999 Oct; 48(10):1220-9. PubMed ID: 10535382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.