BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7945436)

  • 1. Fusidic acid suppresses nitric oxide toxicity in pancreatic islet cells.
    Burkart V; Bellmann K; Hartmann B; Heller B; Imai Y; Kolb H
    Biochem Pharmacol; 1994 Oct; 48(7):1379-85. PubMed ID: 7945436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro.
    Bellmann K; Wenz A; Radons J; Burkart V; Kleemann R; Kolb H
    J Clin Invest; 1995 Jun; 95(6):2840-5. PubMed ID: 7769124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic activation of islet cells improves resistance against oxygen radicals or streptozocin, but not nitric oxide.
    Burkart V; Brenner HH; Hartmann B; Kolb H
    J Clin Endocrinol Metab; 1996 Nov; 81(11):3966-71. PubMed ID: 8923845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Islet cell DNA is a target of inflammatory attack by nitric oxide.
    Fehsel K; Jalowy A; Qi S; Burkart V; Hartmann B; Kolb H
    Diabetes; 1993 Mar; 42(3):496-500. PubMed ID: 8432420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclosporin A protects pancreatic islet cells from nitric oxide-dependent macrophage cytotoxicity.
    Burkart V; Imai Y; Kallmann B; Kolb H
    FEBS Lett; 1992 Nov; 313(1):56-8. PubMed ID: 1426269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydrolipoic acid protects pancreatic islet cells from inflammatory attack.
    Burkart V; Koike T; Brenner HH; Imai Y; Kolb H
    Agents Actions; 1993 Jan; 38(1-2):60-5. PubMed ID: 8480539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-methyl-L-thiocitrulline counteracts interleukin 1 beta induced suppression of pancreatic islet function in vitro, but does not protect against multiple low-dose streptozotocin-induced diabetes in vivo.
    Sternesjö J; Welsh N; Sandler S
    Cytokine; 1997 May; 9(5):352-9. PubMed ID: 9195135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pancreatic islet cells are highly susceptible towards the cytotoxic effects of chemically generated nitric oxide.
    Kröncke KD; Brenner HH; Rodriguez ML; Etzkorn K; Noack EA; Kolb H; Kolb-Bachofen V
    Biochim Biophys Acta; 1993 Sep; 1182(2):221-9. PubMed ID: 8395219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide.
    Kallmann B; Burkart V; Kröncke KD; Kolb-Bachofen V; Kolb H
    Life Sci; 1992; 51(9):671-8. PubMed ID: 1386894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low stress response enhances vulnerability of islet cells in diabetes-prone BB rats.
    Bellmann K; Hui L; Radons J; Burkart V; Kolb H
    Diabetes; 1997 Feb; 46(2):232-6. PubMed ID: 9000699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of nitric oxide toxicity in islet cells by alpha-tocopherol.
    Burkart V; Gross-Eick A; Bellmann K; Radons J; Kolb H
    FEBS Lett; 1995 May; 364(3):259-63. PubMed ID: 7758579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion.
    Radons J; Heller B; Bürkle A; Hartmann B; Rodriguez ML; Kröncke KD; Burkart V; Kolb H
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1270-7. PubMed ID: 8147870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the sphingomyelin content of isolated pancreatic islets. Evaluation of the role of sphingomyelin hydrolysis in the action of interleukin-1 to induce islet overproduction of nitric oxide.
    Kwon G; Bohrer A; Han X; Corbett JA; Ma Z; Gross RW; McDaniel ML; Turk J
    Biochim Biophys Acta; 1996 Mar; 1300(1):63-72. PubMed ID: 8608164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide toxicity in pancreatic islet cells: role of protein biosynthesis, calcium influx and arachidonic acid metabolism.
    Hartmann B; Ngezahayo A; Heller B; Jalowy A; Burkart V; Kolb HA; Kolb H
    Biochem Soc Trans; 1994 Feb; 22(1):23-6. PubMed ID: 7515830
    [No Abstract]   [Full Text] [Related]  

  • 15. Nicotinamide prevents interleukin-1 effects on accumulated insulin release and nitric oxide production in rat islets of Langerhans.
    Andersen HU; Jørgensen KH; Egeberg J; Mandrup-Poulsen T; Nerup J
    Diabetes; 1994 Jun; 43(6):770-7. PubMed ID: 8194662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor-alpha and interferon-gamma inhibit insulin secretion and cause DNA damage in unweaned-rat islets. Extent of nitric oxide involvement.
    Dunger A; Cunningham JM; Delaney CA; Lowe JE; Green MH; Bone AJ; Green IC
    Diabetes; 1996 Feb; 45(2):183-9. PubMed ID: 8549863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Necrosis is the predominant type of islet cell death during development of insulin-dependent diabetes mellitus in BB rats.
    Fehsel K; Kolb-Bachofen V; Kröncke KD
    Lab Invest; 2003 Apr; 83(4):549-59. PubMed ID: 12695558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotozin contributes to islet cell DNA damage.
    Kröncke KD; Fehsel K; Sommer A; Rodriguez ML; Kolb-Bachofen V
    Biol Chem Hoppe Seyler; 1995 Mar; 376(3):179-85. PubMed ID: 7542008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation.
    Kröncke KD; Kolb-Bachofen V; Berschick B; Burkart V; Kolb H
    Biochem Biophys Res Commun; 1991 Mar; 175(3):752-8. PubMed ID: 2025250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of nitric oxide synthase inhibition, nitric oxide and hydroperoxide on insulin release induced by various secretagogues.
    Panagiotidis G; Akesson B; Rydell EL; Lundquist I
    Br J Pharmacol; 1995 Jan; 114(2):289-96. PubMed ID: 7533613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.