These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 7945449)
1. Effect of 5-nitroindole on adenylate energy charge, oxidative phosphorylation, and lipid peroxidation in rat hepatocytes. Dubin M; Carrizo PH; Biscardi AM; Fernandez Villamil SH; Stoppani AO Biochem Pharmacol; 1994 Oct; 48(7):1483-92. PubMed ID: 7945449 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial damage and its role in causing hepatocyte injury during stimulation of lipid peroxidation by iron nitriloacetate. Carini R; Parola M; Dianzani MU; Albano E Arch Biochem Biophys; 1992 Aug; 297(1):110-8. PubMed ID: 1637173 [TBL] [Abstract][Full Text] [Related]
3. Adenylate energy charge of rat and human cultured hepatocytes. Matsui Y; Kitade H; Kamiya T; Kanemaki T; Hiramatsu Y; Okumura T; Kamiyama Y In Vitro Cell Dev Biol Anim; 1994 Sep; 30A(9):609-14. PubMed ID: 7820312 [TBL] [Abstract][Full Text] [Related]
4. Effect of ethanol on rat fetal hepatocytes: studies on cell replication, lipid peroxidation and glutathione. Devi BG; Henderson GI; Frosto TA; Schenker S Hepatology; 1993 Sep; 18(3):648-59. PubMed ID: 8359806 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of oxmetidine (SK&F 92994) cytotoxicity in isolated rat hepatocytes. Rush GF; Ripple M; Chenery R J Pharmacol Exp Ther; 1985 Jun; 233(3):741-6. PubMed ID: 2861279 [TBL] [Abstract][Full Text] [Related]
6. Ferrous-iron induces lipid peroxidation with little damage to energy transduction in mitochondria. Shivaswamy V; Kurup CK; Ramasarma T Mol Cell Biochem; 1993 Mar; 120(2):141-9. PubMed ID: 8487754 [TBL] [Abstract][Full Text] [Related]
7. Effect of acetaminophen administration on hepatic glutathione compartmentation and mitochondrial energy metabolism in the rat. Vendemiale G; Grattagliano I; Altomare E; Turturro N; Guerrieri F Biochem Pharmacol; 1996 Oct; 52(8):1147-54. PubMed ID: 8937421 [TBL] [Abstract][Full Text] [Related]
8. The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. de Souza BTL; Klosowski EM; Mito MS; Constantin RP; Mantovanelli GC; Mewes JM; Bizerra PFV; da Silva FSI; Menezes PVMDC; Gilglioni EH; Utsunomiya KS; Marchiosi R; Dos Santos WD; Ferrarese-Filho O; Caetano W; de Souza Pereira PC; Gonçalves RS; Constantin J; Ishii-Iwamoto EL; Constantin RP Toxicology; 2021 May; 455():152766. PubMed ID: 33775737 [TBL] [Abstract][Full Text] [Related]
9. Possible mechanism of hepatocyte injury induced by diphenylamine and its structurally related nonsteroidal anti-inflammatory drugs. Masubuchi Y; Yamada S; Horie T J Pharmacol Exp Ther; 2000 Mar; 292(3):982-7. PubMed ID: 10688613 [TBL] [Abstract][Full Text] [Related]
10. Aroclor 1254 induced cytotoxicity and mitochondrial dysfunction in isolated rat hepatocytes. Aly HA; Domènech O Toxicology; 2009 Aug; 262(3):175-83. PubMed ID: 19486918 [TBL] [Abstract][Full Text] [Related]
11. F1F0-ATPase, early target of the radical initiator 2,2'-azobis-(2-amidinopropane) dihydrochloride in rat liver mitochondria in vitro. Beauseigneur F; Goubern M; Chapey MF; Gresti J; Vergely C; Tsoko M; Demarquoy J; Rochette L; Clouet P Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):571-6. PubMed ID: 8973568 [TBL] [Abstract][Full Text] [Related]
12. Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Curti C; Mingatto FE; Polizello AC; Galastri LO; Uyemura SA; Santos AC Mol Cell Biochem; 1999 Sep; 199(1-2):103-9. PubMed ID: 10544958 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial toxicity and antioxidant activity of a prenylated flavonoid isolated from Dalea elegans. Elingold I; Isollabella MP; Casanova MB; Celentano AM; Pérez C; Cabrera JL; Diez RA; Dubin M Chem Biol Interact; 2008 Feb; 171(3):294-305. PubMed ID: 18078919 [TBL] [Abstract][Full Text] [Related]
14. Alterations of rat liver mitochondrial oxidative phosphorylation and calcium uptake by benzo[a]pyrene. Salazar I; Pavani M; Aranda W; Maya JD; Morello A; Ferreira J Toxicol Appl Pharmacol; 2004 Jul; 198(1):1-10. PubMed ID: 15207643 [TBL] [Abstract][Full Text] [Related]
15. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress]. Tkachenko HM; Kurhaliuk NM; Vovkanych LS Ukr Biokhim Zh (1999); 2004; 76(1):56-64. PubMed ID: 15909418 [TBL] [Abstract][Full Text] [Related]
16. Role of cellular energy status in tocopheryl hemisuccinate cytoprotection against ethyl methanesulfonate-induced toxicity. Ray SD; Fariss MW Arch Biochem Biophys; 1994 May; 311(1):180-90. PubMed ID: 8185315 [TBL] [Abstract][Full Text] [Related]
17. Hg(II)-induced renal cytotoxicity: in vitro and in vivo implications for the bioenergetic and oxidative status of mitochondria. Santos AC; Uyemura SA; Santos NA; Mingatto FE; Curti C Mol Cell Biochem; 1997 Dec; 177(1-2):53-9. PubMed ID: 9450645 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of toxicity of an experimental bidentate phosphine gold complexed antineoplastic agent in isolated rat hepatocytes. Smith PF; Hoke GD; Alberts DW; Bugelski PJ; Lupo S; Mirabelli CK; Rush GF J Pharmacol Exp Ther; 1989 Jun; 249(3):944-50. PubMed ID: 2732955 [TBL] [Abstract][Full Text] [Related]
19. Effects of cadmium on the energy metabolism of isolated hepatocytes: its relationship with the nonviability of isolated hepatocytes caused by cadmium. Liu RM; Liun YG Biomed Environ Sci; 1990 Sep; 3(3):251-61. PubMed ID: 2252545 [TBL] [Abstract][Full Text] [Related]
20. Toxicity of copper on isolated liver mitochondria: impairment at complexes I, II, and IV leads to increased ROS production. Hosseini MJ; Shaki F; Ghazi-Khansari M; Pourahmad J Cell Biochem Biophys; 2014 Sep; 70(1):367-81. PubMed ID: 24691927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]