These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7945798)

  • 101. Mechanisms of protein modification during model anti-viral heat-treatment bioprocessing of beta-lactoglobulin variant A in the presence of sucrose.
    Smales CM; Pepper DS; James DC
    Biotechnol Appl Biochem; 2000 Oct; 32(2):109-19. PubMed ID: 11001871
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Label-Free Analysis of Protein Aggregation and Phase Behavior.
    Toprakcioglu Z; Challa P; Xu C; Knowles TPJ
    ACS Nano; 2019 Dec; 13(12):13940-13948. PubMed ID: 31738513
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Beta-Lactoglobulin as a Model Food Protein: How to Promote, Prevent, and Exploit Its Unfolding Processes.
    Barbiroli A; Iametti S; Bonomi F
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164393
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Influence of pH, Temperature and Protease Inhibitors on Kinetics and Mechanism of Thermally Induced Aggregation of Potato Proteins.
    Andlinger DJ; Röscheisen P; Hengst C; Kulozik U
    Foods; 2021 Apr; 10(4):. PubMed ID: 33917748
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Combined Spectroscopic and Calorimetric Studies to Reveal Absorption Mechanisms and Conformational Changes of Protein on Nanoporous Biomaterials.
    Ahmadi S; Farokhi M; Padidar P; Falahati M
    Int J Mol Sci; 2015 Jul; 16(8):17289-302. PubMed ID: 26230687
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Non-Arrhenius protein aggregation.
    Wang W; Roberts CJ
    AAPS J; 2013 Jul; 15(3):840-51. PubMed ID: 23615748
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Structural stability and unfolding transition of β-glucosidases: a comparative investigation on isozymes from a thermo-tolerant yeast.
    Shah MA; Mishra S; Chaudhuri TK
    Eur Biophys J; 2011 Jul; 40(7):877-89. PubMed ID: 21538058
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Complete conformational stability of kinetically stable dimeric serine protease milin against pH, temperature, urea, and proteolysis.
    Yadav SC; Jagannadham MV
    Eur Biophys J; 2009 Sep; 38(7):981-91. PubMed ID: 19504261
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Structural features of transiently modified beta-lactoglobulin relevant to the stable binding of large hydrophobic molecules.
    Lozinsky E; Iametti S; Barbiroli A; Likhtenshtein GI; Kálai T; Hideg K; Bonomi F
    Protein J; 2006 Jan; 25(1):1-15. PubMed ID: 16721656
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Thermal stability of Clostridium pasteurianum rubredoxin: deconvoluting the contributions of the metal site and the protein.
    Bonomi F; Fessas D; Iametti S; Kurtz DM; Mazzini S
    Protein Sci; 2000 Dec; 9(12):2413-26. PubMed ID: 11206063
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Dissociation of human alphaB-crystallin aggregates by thiocyanate is structurally and functionally reversible.
    Maida V; Bennardini F; Bonomi F; Ganadu ML; Iametti S; Mura GM
    J Protein Chem; 2000 May; 19(4):311-8. PubMed ID: 11043936
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Mapping fatty acid binding to beta-lactoglobulin: Ligand binding is restricted by modification of Cys 121.
    Narayan M; Berliner LJ
    Protein Sci; 1998 Jan; 7(1):150-7. PubMed ID: 9514270
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Beta-lactoglobulin assembles into amyloid through sequential aggregated intermediates.
    Giurleo JT; He X; Talaga DS
    J Mol Biol; 2008 Sep; 381(5):1332-48. PubMed ID: 18590743
    [TBL] [Abstract][Full Text] [Related]  

  • 114. A conformational change in bovine beta-lactoglobulin at low pH.
    Mills OE; Creamer LK
    Biochim Biophys Acta; 1975 Feb; 379(2):618-26. PubMed ID: 235319
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Reversible and irreversible modifications of beta-lactoglobulin upon exposure to heat.
    Cairoli S; Iametti S; Bonomi F
    J Protein Chem; 1994 Apr; 13(3):347-54. PubMed ID: 7945798
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Pressure denaturation and aggregation of beta-lactoglobulin studied by intrinsic fluorescence depolarization, Rayleigh scattering, radiationless energy transfer and hydrophobic fluoroprobing.
    Stapelfeldt H; Skibsted LH
    J Dairy Res; 1999 Nov; 66(4):545-58. PubMed ID: 10612053
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of beta-lactoglobulin: their role in heat-induced sol-gel state transition.
    Relkin P
    Int J Biol Macromol; 1998 Feb; 22(1):59-66. PubMed ID: 9513817
    [TBL] [Abstract][Full Text] [Related]  

  • 118.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 119.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.