These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7945994)

  • 21. Carbohydrases in camel (Camelus dromedarius) pancreas. Purification and characterization of glucoamylase.
    Mohamed SA; Fahmy AS; Mohamed TM
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jan; 140(1):73-80. PubMed ID: 15621512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some details of the reaction mechanism of glucoamylase from Aspergillus niger--kinetic and structural studies on Trp52-->Phe and Trp317-->Phe mutants.
    Christensen T; Stoffer BB; Svensson B; Christensen U
    Eur J Biochem; 1997 Dec; 250(3):638-45. PubMed ID: 9461285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional roles of the invariant aspartic acid 55, tyrosine 306, and aspartic acid 309 in glucoamylase from Aspergillus awamori studied by mutagenesis.
    Sierks MR; Svensson B
    Biochemistry; 1993 Feb; 32(4):1113-7. PubMed ID: 8424940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of the active site of maltase-glucoamylase from the brush border of rabbit small intestine and kidney by chemical modification studies.
    Pereira B; Sivakami S
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):349-54. PubMed ID: 2006904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic studies on the substrate specificity and active site of rabbit muscle acid alpha-glucosidase.
    Matsui H; Sasaki M; Takemasa E; Kaneta T; Chiba S
    J Biochem; 1984 Oct; 96(4):993-1004. PubMed ID: 6394601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates.
    Seigner C; Prodanov E; Marchis-Mouren G
    Biochim Biophys Acta; 1987 Jun; 913(2):200-9. PubMed ID: 3496119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of human digestive enzymes by hydrogenated malto-oligosaccharides.
    Würsch P; Del Vedovo S
    Int J Vitam Nutr Res; 1981; 51(2):161-5. PubMed ID: 6169675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris.
    Mertens JA; Braker JD; Jordan DB
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2197-213. PubMed ID: 20549574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on the size and shape of rabbit intestinal glucoamylase-maltase complex.
    Sankaran K; Sivakami S; Radhakrishnan AN; Pandit MW
    Biochem J; 1983 Sep; 213(3):719-25. PubMed ID: 6412689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Actions of porcine pancreatic and Bacillus subtilis alpha-amylases and Aspergillus niger glucoamylase on phosphorylated (1--4)-alpha-D-glucan.
    Takeda Y; Hizukuri S; Ozono Y; Suetake M
    Biochim Biophys Acta; 1983 Dec; 749(3):302-11. PubMed ID: 6419777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neutral maltase/glucoamylase from rabbit renal cortex.
    Pereira B; Sivakami S
    Biochem J; 1989 Jul; 261(1):43-7. PubMed ID: 2505756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release.
    Simsek M; Quezada-Calvillo R; Ferruzzi MG; Nichols BL; Hamaker BR
    J Agric Food Chem; 2015 Apr; 63(15):3873-9. PubMed ID: 25816913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Digestive development of the early-weaned pig. 1. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning.
    Kelly D; Smyth JA; McCracken KJ
    Br J Nutr; 1991 Mar; 65(2):169-80. PubMed ID: 1904270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile.
    Seigner C; Prodanov E; Marchis-Mouren G
    Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger.
    Olsen K; Svensson B; Christensen U
    Eur J Biochem; 1992 Oct; 209(2):777-84. PubMed ID: 1425682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soluble neutral maltase--glucoamylase from the small intestine: separation and characterization of components with differing affinity for concanavalin A.
    Forstner G; Salvatore A; Lee L; Forstner J
    Can J Biochem; 1982 Nov; 60(11):1007-13. PubMed ID: 6816458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Substrate specificity and kinetic properties of neutral maltase of human granulocytes].
    Stio M; Giachetti E; Vanni P; Pinzauti G
    C R Seances Soc Biol Fil; 1987; 181(5):553-9. PubMed ID: 2966658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the turnover of rabbit intestinal glucoamylase.
    Sivakami S; Radhakrishnan AN
    Indian J Biochem Biophys; 1978 Jun; 15(3):231-2. PubMed ID: 372094
    [No Abstract]   [Full Text] [Related]  

  • 39. Subsite mapping of Aspergillus niger glucoamylases I and II with malto- and isomaltooligosaccharides.
    Meagher MM; Nikolov ZL; Reilly PJ
    Biotechnol Bioeng; 1989 Aug; 34(5):681-8. PubMed ID: 18588152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental study of alpha-glucosidases in Japanese quails with acid maltase deficiency.
    Usuki F; Ishiura S; Sugita H
    Muscle Nerve; 1986; 9(6):537-43. PubMed ID: 3090432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.