These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7945994)

  • 61. Action of human pancreatic and salivary alpha-amylases on maltooligosaccharides: evaluation of kinetic parameters.
    Saito N; Horiuchi T; Yoshida M; Imai T
    Clin Chim Acta; 1979 Oct; 97(2-3):253-60. PubMed ID: 385176
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mutational analysis of the roles in catalysis and substrate recognition of arginines 54 and 305, aspartic acid 309, and tryptophan 317 located at subsites 1 and 2 in glucoamylase from Aspergillus niger.
    Frandsen TP; Christensen T; Stoffer B; Lehmbeck J; Dupont C; Honzatko RB; Svensson B
    Biochemistry; 1995 Aug; 34(32):10162-9. PubMed ID: 7640270
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Amphiphilic pig intestinal microvillus maltase/glucoamylase. Structure and specificity.
    Sørensen SH; Norén O; Sjöström H; Danielsen EM
    Eur J Biochem; 1982 Sep; 126(3):559-68. PubMed ID: 6814909
    [No Abstract]   [Full Text] [Related]  

  • 64. [The effect of heat exposure on the circadian rhythm of the enzymatic activity in different sections of the rat small intestine].
    Smirnova GI; Rakhimov KR
    Fiziol Zh SSSR Im I M Sechenova; 1992 Sep; 78(9):122-8. PubMed ID: 1338533
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Postprandial Anti-Hyperglycemic Effect of Pyridoxine and Its Derivatives Using In Vitro and In Vivo Animal Models.
    Kim HH; Kang YR; Lee JY; Chang HB; Lee KW; Apostolidis E; Kwon YI
    Nutrients; 2018 Feb; 10(3):. PubMed ID: 29495635
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional roles and subsite locations of Leu177, Trp178 and Asn182 of Aspergillus awamori glucoamylase determined by site-directed mutagenesis.
    Sierks MR; Ford C; Reilly PJ; Svensson B
    Protein Eng; 1993 Jan; 6(1):75-9. PubMed ID: 8433972
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Effect of acid alpha-glucosidase from animal tissues on structurally different oligosaccharides].
    Minakova AL; Preobrazhenskaia ME
    Biokhimiia; 1983 Jan; 48(1):40-5. PubMed ID: 6403061
    [No Abstract]   [Full Text] [Related]  

  • 68. Biosynthesis of intestinal microvillar proteins. Pulse-chase labelling studies on maltase-glucoamylase, aminopeptidase A and dipeptidyl peptidase IV.
    Danielsen EM; Sjöström H; Norén O
    Biochem J; 1983 Feb; 210(2):389-93. PubMed ID: 6407473
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Glucoamylase and disaccharidase activities in normal subjects and in patients with mucosal injury of the small intestine.
    Lebenthal E; Lee PC
    J Pediatr; 1980 Sep; 97(3):389-93. PubMed ID: 6774072
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hydrophobic binding domains of rat intestinal maltase-glucoamylase.
    Lee L; Forstner G
    Biochem Cell Biol; 1986 Aug; 64(8):782-7. PubMed ID: 3094559
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Longitudinal study of the human intestinal brush border membrane proteins. Distribution of the main disaccharidases and peptidases.
    Triadou N; Bataille J; Schmitz J
    Gastroenterology; 1983 Dec; 85(6):1326-32. PubMed ID: 6414875
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Demonstration of sucrase-isomaltase complex in chick intestine.
    Mizuno K; Moriuchi S; Hosoya N
    J Nutr Sci Vitaminol (Tokyo); 1982 Dec; 28(6):599-608. PubMed ID: 6762409
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity.
    Sim L; Quezada-Calvillo R; Sterchi EE; Nichols BL; Rose DR
    J Mol Biol; 2008 Jan; 375(3):782-92. PubMed ID: 18036614
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides.
    Sierks MR; Svensson B
    Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inhibition of Human and Rat Sucrase and Maltase Activities To Assess Antiglycemic Potential: Optimization of the Assay Using Acarbose and Polyphenols.
    Pyner A; Nyambe-Silavwe H; Williamson G
    J Agric Food Chem; 2017 Oct; 65(39):8643-8651. PubMed ID: 28914528
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Effects of Medium Chain Triglycerides Intake on Lipid Metabolism and Intestinal Disaccharidase Activities in Rats].
    Suzuki E; Oshima M; Sonotsuka M; Hayashitani H; Ohtani S; Kishida K
    Yakugaku Zasshi; 2020; 140(8):1051-1061. PubMed ID: 32741863
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modification of a minor glucoamylase from Aspergillus saitoi with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide metho p-toluenesulfonate.
    Koyama T; Inokuchi N; Iwama M; Irie M
    J Biochem; 1985 Feb; 97(2):633-41. PubMed ID: 3924906
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The substrate specificity of the enzyme amyloglucosidase (AMG). Part I. Deoxy derivatives.
    Bock K; Pedersen H
    Acta Chem Scand B; 1987 Sep; 41(8):617-28. PubMed ID: 3122479
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Substrate thermostabilization of soluble and immobilized glucoamylase].
    Klesov AA; Gerasimas VB
    Biokhimiia; 1979 Jun; 44(6):1084-92. PubMed ID: 380665
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of Bacillus stearothermophilus cyclodextrin glucanotransferase in ascorbic acid 2-O-alpha-glucoside formation.
    Tanaka M; Muto N; Yamamoto I
    Biochim Biophys Acta; 1991 Jun; 1078(2):127-32. PubMed ID: 1829640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.