BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 7946056)

  • 1. Tertiary structure of the heme-binding domain of rat cytochrome b5 based on homology modeling.
    Gill DS; Roush DJ; Willson RC
    J Biomol Struct Dyn; 1994 Apr; 11(5):1003-15. PubMed ID: 7946056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods.
    Muskett FW; Kelly GP; Whitford D
    J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M
    Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of cytochromes b5 from insects and vertebrates.
    Wang L; Cowley AB; Terzyan S; Zhang X; Benson DR
    Proteins; 2007 May; 67(2):293-304. PubMed ID: 17299762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: pyridine nucleotide-binding and interaction with an electron-transfer partner.
    Nishida H; Miki K
    Proteins; 1996 Sep; 26(1):32-41. PubMed ID: 8880927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of human erythrocyte NADH-cytochrome b5 reductase.
    Bando S; Takano T; Yubisui T; Shirabe K; Takeshita M; Nakagawa A
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):1929-34. PubMed ID: 15502298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of differences in the physical properties of the equilibrium forms of cytochrome b5 revealed through high-resolution NMR structures and backbone dynamic analyses.
    Dangi B; Sarma S; Yan C; Banville DL; Guiles RD
    Biochemistry; 1998 Jun; 37(23):8289-302. PubMed ID: 9622481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design challenges for hemoproteins: the solution structure of apocytochrome b5.
    Falzone CJ; Mayer MR; Whiteman EL; Moore CD; Lecomte JT
    Biochemistry; 1996 May; 35(21):6519-26. PubMed ID: 8639599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of the naturally fused CS and cytochrome b
    Benson DR; Lovell S; Mehzabeen N; Galeva N; Cooper A; Gao P; Battaile KP; Zhu H
    Acta Crystallogr D Struct Biol; 2019 Jul; 75(Pt 7):628-638. PubMed ID: 31282472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accommodating a nonconservative internal mutation by water-mediated hydrogen bonding between β-sheet strands: a comparison of human and rat type B (mitochondrial) cytochrome b5.
    Parthasarathy S; Altuve A; Terzyan S; Zhang X; Kuczera K; Rivera M; Benson DR
    Biochemistry; 2011 Jun; 50(24):5544-54. PubMed ID: 21574570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and molecular characterization of a novel b5-type cytochrome of the parasitic nematode, Ascaris suum.
    Yu Y; Yamasaki H; Kita K; Takamiya S
    Arch Biochem Biophys; 1996 Apr; 328(1):165-72. PubMed ID: 8638926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergence in nonspecific hydrophobic packing interactions in the apo state, and its possible role in functional specialization of mitochondrial and microsomal cytochrome b5.
    Cowley AB; Sun N; Rivera M; Benson DR
    Biochemistry; 2005 Nov; 44(44):14606-15. PubMed ID: 16262260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, interaction and electron transfer between cytochrome b5, its E44A and/or E56A mutants and cytochrome c.
    Sun YL; Wang YH; Yan MM; Sun BY; Xie Y; Huang ZX; Jiang SK; Wu HM
    J Mol Biol; 1999 Jan; 285(1):347-59. PubMed ID: 9878411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Computer modeling of the three-dimensional structure of full-length cytochrome B5].
    Ivanov AS; Skvortsov VS; Archakov AI
    Vopr Med Khim; 2000; 46(6):615-25. PubMed ID: 11234286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The solution structure of oxidized rat microsomal cytochrome b5.
    Arnesano F; Banci L; Bertini I; Felli IC
    Biochemistry; 1998 Jan; 37(1):173-84. PubMed ID: 9425037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The function of tyrosine 74 of cytochrome b5.
    Vergères G; Chen DY; Wu FF; Waskell L
    Arch Biochem Biophys; 1993 Sep; 305(2):231-41. PubMed ID: 8373159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the differences between rat liver outer mitochondrial membrane cytochrome b5 and microsomal cytochromes b5.
    Altuve A; Silchenko S; Lee KH; Kuczera K; Terzyan S; Zhang X; Benson DR; Rivera M
    Biochemistry; 2001 Aug; 40(32):9469-83. PubMed ID: 11583146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.