BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7946329)

  • 1. Action of a diffusible target-derived chemoattractant on cortical axon branch induction and directed growth.
    Sato M; Lopez-Mascaraque L; Heffner CD; O'Leary DD
    Neuron; 1994 Oct; 13(4):791-803. PubMed ID: 7946329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target control of collateral extension and directional axon growth in the mammalian brain.
    Heffner CD; Lumsden AG; O'Leary DD
    Science; 1990 Jan; 247(4939):217-20. PubMed ID: 2294603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A target-derived chemoattractant controls the development of the corticopontine projection by a novel mechanism of axon targeting.
    O'Leary DD; Heffner CD; Kutka L; López-Mascaraque L; Missias A; Reinoso BS
    Dev Suppl; 1991; Suppl 2():123-30. PubMed ID: 1842350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collateral branch formation related to cellular structures in the axon tract during corticopontine target recognition.
    Bastmeyer M; Daston MM; Possel H; O'Leary DD
    J Comp Neurol; 1998 Mar; 392(1):1-18. PubMed ID: 9482229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target selection by cortical axons: alternative mechanisms to establish axonal connections in the developing brain.
    O'Leary DD; Bicknese AR; De Carlos JA; Heffner CD; Koester SE; Kutka LJ; Terashima T
    Cold Spring Harb Symp Quant Biol; 1990; 55():453-68. PubMed ID: 2132832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of target recognition by interstitial axon branching along developing cortical axons.
    Bastmeyer M; O'Leary DD
    J Neurosci; 1996 Feb; 16(4):1450-9. PubMed ID: 8778296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target.
    Richards LJ; Koester SE; Tuttle R; O'Leary DD
    J Neurosci; 1997 Apr; 17(7):2445-58. PubMed ID: 9065505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro.
    Baird DH; Hatten ME; Mason CA
    J Neurosci; 1992 Feb; 12(2):619-34. PubMed ID: 1740694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and "waiting periods".
    O'Leary DD; Terashima T
    Neuron; 1988 Dec; 1(10):901-10. PubMed ID: 3272157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic behaviors of growth cones extending in the corpus callosum of living cortical brain slices observed with video microscopy.
    Halloran MC; Kalil K
    J Neurosci; 1994 Apr; 14(4):2161-77. PubMed ID: 8158263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors.
    Szebenyi G; Callaway JL; Dent EW; Kalil K
    J Neurosci; 1998 Oct; 18(19):7930-40. PubMed ID: 9742160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus.
    Shinoda Y; Sugiuchi Y; Futami T; Izawa R
    J Neurophysiol; 1992 Mar; 67(3):547-60. PubMed ID: 1578244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutually Repulsive EphA7-EfnA5 Organize Region-to-Region Corticopontine Projection by Inhibiting Collateral Extension.
    Iguchi T; Oka Y; Yasumura M; Omi M; Kuroda K; Yagi H; Xie MJ; Taniguchi M; Bastmeyer M; Sato M
    J Neurosci; 2021 Jun; 41(22):4795-4808. PubMed ID: 33906900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectopic expression of the neural cell adhesion molecule L1 in astrocytes leads to changes in the development of the corticospinal tract.
    Ourednik J; Ourednik V; Bastmeyer M; Schachner M
    Eur J Neurosci; 2001 Nov; 14(9):1464-74. PubMed ID: 11722608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth-promoting interactions between the murine neocortex and thalamus in organotypic co-cultures.
    Rennie S; Lotto RB; Price DJ
    Neuroscience; 1994 Aug; 61(3):547-64. PubMed ID: 7969929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common mechanisms underlying growth cone guidance and axon branching.
    Kalil K; Szebenyi G; Dent EW
    J Neurobiol; 2000 Aug; 44(2):145-58. PubMed ID: 10934318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change in chemoattractant responsiveness of developing axons at an intermediate target.
    Shirasaki R; Katsumata R; Murakami F
    Science; 1998 Jan; 279(5347):105-7. PubMed ID: 9417018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addition of tetrodotoxin alters the morphology of thalamocortical axons in organotypic cocultures.
    Wilkemeyer MF; Angelides KJ
    J Neurosci Res; 1996 Mar; 43(6):707-18. PubMed ID: 8984200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Branching of individual somatosensory cerebropontine axons in rat: evidence of divergence.
    Bolstad I; Leergaard TB; Bjaalie JG
    Brain Struct Funct; 2007 Jul; 212(1):85-93. PubMed ID: 17717700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate immunoreactivity in the rat basilar pons: light and electron microscopy reveals labeled boutons and cells of origin of afferent projections.
    Border BG; Mihailoff GA
    Neuroscience; 1991; 45(1):47-61. PubMed ID: 1721694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.