These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 7946469)

  • 1. Genetic adaptation of bacteria to chlorinated aromatic compounds.
    van der Meer JR
    FEMS Microbiol Rev; 1994 Oct; 15(2-3):239-49. PubMed ID: 7946469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds.
    van der Meer JR
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):159-78. PubMed ID: 9049028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cloning and sequence analysis of 1,2,4-trichlorobenzene dioxygenase and dehydrogenase genes].
    Jiang J; Wang H; Gao JS; Song L; Ning DL
    Huan Jing Ke Xue; 2008 Jun; 29(6):1655-9. PubMed ID: 18763518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters.
    Göbel M; Kranz OH; Kaschabek SR; Schmidt E; Pieper DH; Reineke W
    Arch Microbiol; 2004 Oct; 182(2-3):147-56. PubMed ID: 15340793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative studies on the degradation of three aromatic compounds by Pseudomonas sp. and Staphylococcus xylosus.
    Ziagova MG; Liakopoulou-Kyriakides M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):1017-25. PubMed ID: 20486010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin.
    Hirose J; Kimura N; Suyama A; Kobayashi A; Hayashida S; Furukawa K
    FEMS Microbiol Lett; 1994 May; 118(3):273-7. PubMed ID: 8020752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Experiment of biodegradation of chlorobenzenes].
    Gan P; Fan Y; Wang M
    Huan Jing Ke Xue; 2001 May; 22(3):93-6. PubMed ID: 11507916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly.
    Reineke W
    Annu Rev Microbiol; 1998; 52():287-331. PubMed ID: 9891800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Isolation, idetification of 1,2, 4-trichlorobenzene-degrading strain Pseudomonas nitroreducens J5-1 and cloning of chlorocatechol 1,2-dioxygenase gene].
    Song L; Wang H; Jiang J; Gao JS; Shi HC
    Huan Jing Ke Xue; 2007 Aug; 28(8):1878-81. PubMed ID: 17926427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas genomes: diverse and adaptable.
    Silby MW; Winstanley C; Godfrey SA; Levy SB; Jackson RW
    FEMS Microbiol Rev; 2011 Jul; 35(4):652-80. PubMed ID: 21361996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds.
    Häggblom M
    J Basic Microbiol; 1990; 30(2):115-41. PubMed ID: 2191115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of chlorobenzene on Pseudomonas sp. strain RHO1, a chlorobenzene-degrading strain.
    Fritz H; Reineke W; Schmidt E
    Biodegradation; 1991-1992; 2(3):165-70. PubMed ID: 1368961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of pentafluorosulfanyl-substituted aminophenol in Pseudomonas spp.
    Saccomanno M; Hussain S; O'Connor NK; Beier P; Somlyay M; Konrat R; Murphy CD
    Biodegradation; 2018 Jun; 29(3):259-270. PubMed ID: 29603052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mutants of the plasmid for biodegradation of naphthalene, determining catechol oxidation via the meta-pathway].
    Kulakova AN; Boronin AM
    Mikrobiologiia; 1989; 58(2):298-304. PubMed ID: 2811710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorobenzene degradation by Bacillus sp. TAS6CB: a potential candidate to remediate chlorinated hydrocarbon contaminated sites.
    Vyas TK; Murthy SR
    J Basic Microbiol; 2015 Mar; 55(3):382-8. PubMed ID: 23720149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of bacterial strains with novel degradative capabilities for chloroaromatics.
    Reineke W
    J Basic Microbiol; 1986; 26(9):551-67. PubMed ID: 3553531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial degradation of chlorinated aromatic compounds.
    Sahasrabudhe SR; Modi VV
    Microbiol Sci; 1987 Oct; 4(10):300-3. PubMed ID: 3153591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of a catechol-degrading gene cluster from 3,4-dichloroaniline degrading bacterium Pseudomonas sp. KB35B.
    Kim YM; Park K; Kim WC; Shin JH; Kim JE; Park HD; Rhee IK
    J Agric Food Chem; 2007 Jun; 55(12):4722-7. PubMed ID: 17497880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the 3-methyl-4-nitrophenol degradation pathway and genes of Pseudomonas sp. strain TSN1.
    Takeo M; Yamamoto K; Sonoyama M; Miyanaga K; Kanbara N; Honda K; Kato DI; Negoro S
    J Biosci Bioeng; 2018 Sep; 126(3):355-362. PubMed ID: 29699943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.