These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 7947090)
1. Regulation of cell proliferation under extreme and moderate hypoxia: the role of pyrimidine (deoxy)nucleotides. Amellem O; Löffler M; Pettersen EO Br J Cancer; 1994 Nov; 70(5):857-66. PubMed ID: 7947090 [TBL] [Abstract][Full Text] [Related]
2. The retinoblastoma protein-associated cell cycle arrest in S-phase under moderate hypoxia is disrupted in cells expressing HPV18 E7 oncoprotein. Amellem O; Sandvik JA; Stokke T; Pettersen EO Br J Cancer; 1998 Mar; 77(6):862-72. PubMed ID: 9528826 [TBL] [Abstract][Full Text] [Related]
3. The biosynthetic pathway of pyrimidine (deoxy)nucleotides: a sensor of oxygen tension necessary for maintaining cell proliferation? Löffler M Exp Cell Res; 1989 Jun; 182(2):673-80. PubMed ID: 2721599 [TBL] [Abstract][Full Text] [Related]
4. The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phases during hypoxic stress. Amellem O; Stokke T; Sandvik JA; Pettersen EO Exp Cell Res; 1996 Aug; 227(1):106-15. PubMed ID: 8806457 [TBL] [Abstract][Full Text] [Related]
5. Cell cycle progression in human cells following re-oxygenation after extreme hypoxia: consequences concerning initiation of DNA synthesis. Amellem O; Pettersen EO Cell Prolif; 1993 Jan; 26(1):25-35. PubMed ID: 8439587 [TBL] [Abstract][Full Text] [Related]
6. A cytokinetic approach to determine the range of O2-dependence of pyrimidine(deoxy)nucleotide biosynthesis relevant for cell proliferation. Löffler M Cell Prolif; 1992 May; 25(3):169-79. PubMed ID: 1596530 [TBL] [Abstract][Full Text] [Related]
7. Cell cycle progression and radiation survival following prolonged hypoxia and re-oxygenation. Koritzinsky M; Wouters BG; Amellem O; Pettersen EO Int J Radiat Biol; 2001 Mar; 77(3):319-28. PubMed ID: 11258846 [TBL] [Abstract][Full Text] [Related]
8. Survival of synchronized human NHIK 3025 cells irradiated aerobically following a prolonged treatment with extremely hypoxic conditions. Koritzinsky M; Furre T; Amellem O; Pettersen EO Int J Radiat Biol; 1998 Oct; 74(4):491-500. PubMed ID: 9798960 [TBL] [Abstract][Full Text] [Related]
9. Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. Quéméneur L; Gerland LM; Flacher M; Ffrench M; Revillard JP; Genestier L J Immunol; 2003 May; 170(10):4986-95. PubMed ID: 12734342 [TBL] [Abstract][Full Text] [Related]
10. Role of ribonucleotide reductase in regulation of cell cycle progression during and after exposure to moderate hypoxia. Graff P; Amellem O; Andersson KK; Pettersen EO Anticancer Res; 2002; 22(1A):59-68. PubMed ID: 12017335 [TBL] [Abstract][Full Text] [Related]
11. Increased radiosensitivity with chronic hypoxia in four human tumor cell lines. Zölzer F; Streffer C Int J Radiat Oncol Biol Phys; 2002 Nov; 54(3):910-20. PubMed ID: 12377345 [TBL] [Abstract][Full Text] [Related]
12. Restimulation of cell cycle progression by hypoxic tumour cells with deoxynucleosides requires ppm oxygen tension. Löffler M Exp Cell Res; 1987 Mar; 169(1):255-61. PubMed ID: 3102268 [TBL] [Abstract][Full Text] [Related]
13. Dose-related effects of methotrexate on purine and pyrimidine nucleotides and on cell-kinetic parameters in MOLT-4 malignant human T-lymphoblasts. Bökkerink JP; De Abreu RA; Bakker MA; Hulscher TW; Van Baal JM; De Vaan GA Biochem Pharmacol; 1986 Oct; 35(20):3557-64. PubMed ID: 2429668 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia-induced apoptosis in human cells with normal p53 status and function, without any alteration in the nuclear protein level. Amellem O; Stokke T; Sandvik JA; Smedshammer L; Pettersen EO Exp Cell Res; 1997 May; 232(2):361-70. PubMed ID: 9168813 [TBL] [Abstract][Full Text] [Related]
15. Radiation-modifying effect of oxygen in synchronized cells pre-treated with acute or prolonged hypoxia. Pettersen EO; Wang H Int J Radiat Biol; 1996 Sep; 70(3):319-26. PubMed ID: 8800203 [TBL] [Abstract][Full Text] [Related]
16. The role of p27 in controlling the oxygen-dependent checkpoint of mammalian cells in late G1. Graff P; Amellem O; Seim J; Stokke T; Pettersen EO Anticancer Res; 2005; 25(3B):2259-67. PubMed ID: 16158973 [TBL] [Abstract][Full Text] [Related]
17. Counteraction of pRb-dependent protection after extreme hypoxia by elevated ribonucleotide reductase. Graff P; Seim J; Amellem Ø; Arakawa H; Nakamura Y; Andersson KK; Stokke T; Pettersen EO Cell Prolif; 2004 Oct; 37(5):367-83. PubMed ID: 15377335 [TBL] [Abstract][Full Text] [Related]
18. Oxygen dependent regulation of mammalian ribonucleotide reductase in vivo and possible significance for replicon initiation. Probst H; Schiffer H; Gekeler V; Scheffler K Biochem Biophys Res Commun; 1989 Aug; 163(1):334-40. PubMed ID: 2549992 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of cell-cycle progression by acute treatment with various degrees of hypoxia: modifications induced by low concentrations of misonidazole present during hypoxia. Pettersen EO; Lindmo T Br J Cancer; 1983 Dec; 48(6):809-17. PubMed ID: 6652020 [TBL] [Abstract][Full Text] [Related]