These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 7947695)
21. Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. Wolf AA; Jobling MG; Wimer-Mackin S; Ferguson-Maltzman M; Madara JL; Holmes RK; Lencer WI J Cell Biol; 1998 May; 141(4):917-27. PubMed ID: 9585411 [TBL] [Abstract][Full Text] [Related]
22. Characterization and partial purification of the human receptor for the heat-stable enterotoxin. Visweswariah SS; Ramachandran V; Ramamohan S; Das G; Ramachandran J Eur J Biochem; 1994 Feb; 219(3):727-36. PubMed ID: 7906648 [TBL] [Abstract][Full Text] [Related]
23. Crystal structure of a new heat-labile enterotoxin, LT-IIb. van den Akker F; Sarfaty S; Twiddy EM; Connell TD; Holmes RK; Hol WG Structure; 1996 Jun; 4(6):665-78. PubMed ID: 8805549 [TBL] [Abstract][Full Text] [Related]
24. Binding protein for Escherichia coli heat-stable enterotoxin II in mouse intestinal membrane. Hitotsubashi S; Fujii Y; Okamoto K FEMS Microbiol Lett; 1994 Oct; 122(3):297-302. PubMed ID: 7988871 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of the adherence of cholera toxin and the heat-labile enterotoxin of Escherichia coli to cell-surface GM1 by oligosaccharide-derivatized dendrimers. Thompson JP; Schengrund CL Biochem Pharmacol; 1998 Sep; 56(5):591-7. PubMed ID: 9783728 [TBL] [Abstract][Full Text] [Related]
26. Comparative study of the nature and biological activities of bacterial enterotoxins. Gemmell CG J Med Microbiol; 1984 Jun; 17(3):217-35. PubMed ID: 6327986 [TBL] [Abstract][Full Text] [Related]
27. Structural basis for differential receptor binding of cholera and Escherichia coli heat-labile toxins: influence of heterologous amino acid substitutions in the cholera B-subunit. Bäckström M; Shahabi V; Johansson S; Teneberg S; Kjellberg A; Miller-Podraza H; Holmgren J; Lebens M Mol Microbiol; 1997 May; 24(3):489-97. PubMed ID: 9179843 [TBL] [Abstract][Full Text] [Related]
28. Bile and unsaturated fatty acids inhibit the binding of cholera toxin and Escherichia coli heat-labile enterotoxin to GM1 receptor. Chatterjee A; Chowdhury R Antimicrob Agents Chemother; 2008 Jan; 52(1):220-4. PubMed ID: 17954701 [TBL] [Abstract][Full Text] [Related]
29. Characterisation of the binding sites for Escherichia coli heat-labile toxin type I in intestinal brush borders. Griffiths SL; Critchley DR Biochim Biophys Acta; 1991 Oct; 1075(2):154-61. PubMed ID: 1932071 [TBL] [Abstract][Full Text] [Related]
30. Identification and characterization of a new family of high-affinity receptors for Escherichia coli heat-stable enterotoxin in rat intestinal membranes. Hugues M; Crane M; Hakki S; O'Hanley P; Waldman SA Biochemistry; 1991 Nov; 30(44):10738-45. PubMed ID: 1681902 [TBL] [Abstract][Full Text] [Related]
31. Unexpected carbohydrate cross-binding by Escherichia coli heat-labile enterotoxin. Recognition of human and rabbit target cell glycoconjugates in comparison with cholera toxin. Karlsson KA; Teneberg S; Angström J; Kjellberg A; Hirst TR; Berström J; Miller-Podraza H Bioorg Med Chem; 1996 Nov; 4(11):1919-28. PubMed ID: 9007276 [TBL] [Abstract][Full Text] [Related]
33. Comparison of the glycolipid-binding specificities of cholera toxin and porcine Escherichia coli heat-labile enterotoxin: identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine. Teneberg S; Hirst TR; Angström J; Karlsson KA Glycoconj J; 1994 Dec; 11(6):533-40. PubMed ID: 7696856 [TBL] [Abstract][Full Text] [Related]
34. Opossum kidney contains a functional receptor for the Escherichia coli heat-stable enterotoxin. White AA; Krause WJ; Turner JT; Forte LR Biochem Biophys Res Commun; 1989 Feb; 159(1):363-7. PubMed ID: 2564275 [TBL] [Abstract][Full Text] [Related]
35. A 56 kDa binding protein for Escherichia coli heat-stable enterotoxin isolated from the cytoskeleton of rat intestinal membrane does not possess guanylate cyclase activity. Hakki S; Robertson DC; Waldman SA Biochim Biophys Acta; 1993 Oct; 1152(1):1-8. PubMed ID: 8104484 [TBL] [Abstract][Full Text] [Related]
36. Gangliosides as receptors for bacterial enterotoxins. Fishman PH; Pacuszka T; Orlandi PA Adv Lipid Res; 1993; 25():165-87. PubMed ID: 8396312 [No Abstract] [Full Text] [Related]
37. Binding of Escherichia coli heat-stable toxin and rise of guanylyl cyclase activity in the brush-border membranes of rabbit intestinal epithelial cells. Bhattacharya J; Chakrabarti MK J Diarrhoeal Dis Res; 1999 Mar; 17(1):28-33. PubMed ID: 10892494 [TBL] [Abstract][Full Text] [Related]
38. Characterization of the receptor for heat-stable enterotoxin from Escherichia coli in rat intestine. Kuno T; Kamisaki Y; Waldman SA; Gariepy J; Schoolnik G; Murad F J Biol Chem; 1986 Jan; 261(3):1470-6. PubMed ID: 3944095 [TBL] [Abstract][Full Text] [Related]
39. Escherichia coli heat-labile enterotoxin binds to glycosylated proteins with lactose by amino carbonyl reaction. Shida K; Takamizawa K; Nagaoka M; Tsuji T; Osawa T Microbiol Immunol; 1994; 38(4):273-9. PubMed ID: 7935045 [TBL] [Abstract][Full Text] [Related]
40. Cellular refractoriness to the heat-stable enterotoxin peptide is associated with alterations in levels of the differentially glycosylated forms of guanylyl cyclase C. Ghanekar Y; Chandrashaker A; Visweswariah SS Eur J Biochem; 2003 Sep; 270(18):3848-57. PubMed ID: 12950269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]