These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 7947743)
1. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Hammel KE; Mozuch MD; Jensen KA; Kersten PJ Biochemistry; 1994 Nov; 33(45):13349-54. PubMed ID: 7947743 [TBL] [Abstract][Full Text] [Related]
2. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound. Tuor U; Wariishi H; Schoemaker HE; Gold MH Biochemistry; 1992 Jun; 31(21):4986-95. PubMed ID: 1599925 [TBL] [Abstract][Full Text] [Related]
3. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin. Kirk TK; Tien M; Kersten PJ; Mozuch MD; Kalyanaraman B Biochem J; 1986 May; 236(1):279-87. PubMed ID: 3024619 [TBL] [Abstract][Full Text] [Related]
4. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. Kersten PJ; Kirk TK J Bacteriol; 1987 May; 169(5):2195-201. PubMed ID: 3553159 [TBL] [Abstract][Full Text] [Related]
5. Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol. Lundell T; Wever R; Floris R; Harvey P; Hatakka A; Brunow G; Schoemaker H Eur J Biochem; 1993 Feb; 211(3):391-402. PubMed ID: 8436103 [TBL] [Abstract][Full Text] [Related]
6. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Orth AB; Royse DJ; Tien M Appl Environ Microbiol; 1993 Dec; 59(12):4017-23. PubMed ID: 8285705 [TBL] [Abstract][Full Text] [Related]
7. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071 [TBL] [Abstract][Full Text] [Related]
8. Glyoxal oxidases: their nature and properties. Daou M; Faulds CB World J Microbiol Biotechnol; 2017 May; 33(5):87. PubMed ID: 28390013 [TBL] [Abstract][Full Text] [Related]
9. Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Niku-Paavola ML; Karhunen E; Salola P; Raunio V Biochem J; 1988 Sep; 254(3):877-83. PubMed ID: 3196301 [TBL] [Abstract][Full Text] [Related]
10. Glyoxylate-supported reactions catalyzed by Mn peroxidase of Phanerochaete chrysosporium: activity in the absence of added hydrogen peroxide. Kuan IC; Tien M Arch Biochem Biophys; 1993 May; 302(2):447-54. PubMed ID: 8387747 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of veratryl alcohol oxidase activity of lignin peroxidase H2 by 3-amino-1,2,4-triazole. Tuisel H; Grover TA; Bumpus JA; Aust SD Arch Biochem Biophys; 1992 Mar; 293(2):287-91. PubMed ID: 1536563 [TBL] [Abstract][Full Text] [Related]
13. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Timofeevski SL; Nie G; Reading NS; Aust SD Biochem Biophys Res Commun; 1999 Mar; 256(3):500-4. PubMed ID: 10080927 [TBL] [Abstract][Full Text] [Related]
14. Improvement of ligninolytic properties by recombinant expression of glyoxal oxidase gene in hyper lignin-degrading fungus Phanerochaete sordida YK-624. Yamada Y; Wang J; Kawagishi H; Hirai H Biosci Biotechnol Biochem; 2014; 78(12):2128-33. PubMed ID: 25117933 [TBL] [Abstract][Full Text] [Related]
15. Production and chemiluminescent free radical reactions of glyoxal in lipid peroxidation of linoleic acid by the ligninolytic enzyme, manganese peroxidase. Watanabe T; Shirai N; Okada H; Honda Y; Kuwahara M Eur J Biochem; 2001 Dec; 268(23):6114-22. PubMed ID: 11733005 [TBL] [Abstract][Full Text] [Related]
16. Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. Orth AB; Denny M; Tien M Appl Environ Microbiol; 1991 Sep; 57(9):2591-6. PubMed ID: 1768132 [TBL] [Abstract][Full Text] [Related]
17. Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Valli K; Wariishi H; Gold MH Biochemistry; 1990 Sep; 29(37):8535-9. PubMed ID: 2271536 [TBL] [Abstract][Full Text] [Related]
18. Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Kersten PJ Proc Natl Acad Sci U S A; 1990 Apr; 87(8):2936-40. PubMed ID: 11607073 [TBL] [Abstract][Full Text] [Related]
19. Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus. Daou M; Piumi F; Cullen D; Record E; Faulds CB Appl Environ Microbiol; 2016 Aug; 82(16):4867-75. PubMed ID: 27260365 [TBL] [Abstract][Full Text] [Related]
20. A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. Akamatsu Y; Ma DB; Higuchi T; Shimada M FEBS Lett; 1990 Aug; 269(1):261-3. PubMed ID: 2387411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]