These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 7947779)

  • 1. A mutant rhodopsin photoproduct with a protonated Schiff base displays an active-state conformation: a Fourier-transform infrared spectroscopy study.
    Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1994 Nov; 33(46):13700-5. PubMed ID: 7947779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study.
    Zvyaga TA; Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transducin-dependent protonation of glutamic acid 134 in rhodopsin.
    Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 2000 Aug; 39(34):10607-12. PubMed ID: 10956053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin.
    Standfuss J; Zaitseva E; Mahalingam M; Vogel R
    J Mol Biol; 2008 Jun; 380(1):145-57. PubMed ID: 18511075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane signaling mediated by water in bovine rhodopsin.
    Nishimura S; Kandori H; Maeda A
    Photochem Photobiol; 1997 Dec; 66(6):796-801. PubMed ID: 9421967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Sep; 32(35):9165-71. PubMed ID: 8396426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodopsin with 11-cis-locked chromophore is capable of forming an active state photoproduct.
    Fan G; Siebert F; Sheves M; Vogel R
    J Biol Chem; 2002 Oct; 277(43):40229-34. PubMed ID: 12177057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved spectroscopy of the early photolysis intermediates of rhodopsin Schiff base counterion mutants.
    Jäger S; Lewis JW; Zvyaga TA; Szundi I; Sakmar TP; Kliger DS
    Biochemistry; 1997 Feb; 36(8):1999-2009. PubMed ID: 9047297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes in the peptide backbone in complex formation between activated rhodopsin and transducin studied by FTIR spectroscopy.
    Nishimura S; Sasaki J; Kandori H; Matsuda T; Fukada Y; Maeda A
    Biochemistry; 1996 Oct; 35(41):13267-71. PubMed ID: 8873590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ
    J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Glu181 in the photoactivation of rhodopsin.
    Lüdeke S; Beck M; Yan EC; Sakmar TP; Siebert F; Vogel R
    J Mol Biol; 2005 Oct; 353(2):345-56. PubMed ID: 16169009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study.
    Vogel R; Fan GB; Sheves M; Siebert F
    Biochemistry; 2000 Aug; 39(30):8895-908. PubMed ID: 10913302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrogen-bonding network of water molecules and the peptide backbone in the region connecting Asp83, Gly120, and Glu113 in bovine rhodopsin.
    Nagata T; Terakita A; Kandori H; Shichida Y; Maeda A
    Biochemistry; 1998 Dec; 37(49):17216-22. PubMed ID: 9860835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.