These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 7947785)

  • 1. Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction.
    Palczewski K; Jäger S; Buczyłko J; Crouch RK; Bredberg DL; Hofmann KP; Asson-Batres MA; Saari JC
    Biochemistry; 1994 Nov; 33(46):13741-50. PubMed ID: 7947785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S; Palczewski K; Hofmann KP
    Biochemistry; 1996 Mar; 35(9):2901-8. PubMed ID: 8608127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation.
    Blakeley LR; Chen C; Chen CK; Chen J; Crouch RK; Travis GH; Koutalos Y
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3483-91. PubMed ID: 21398289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor recovery in retinoid-deprived rats after vitamin A replenishment.
    Katz ML; Chen DM; Stientjes HJ; Stark WS
    Exp Eye Res; 1993 Jun; 56(6):671-82. PubMed ID: 8595809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
    He Q; Alexeev D; Estevez ME; McCabe SL; Calvert PD; Ong DE; Cornwall MC; Zimmerman AL; Makino CL
    J Gen Physiol; 2006 Oct; 128(4):473-85. PubMed ID: 17001087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors.
    Chen C; Tsina E; Cornwall MC; Crouch RK; Vijayaraghavan S; Koutalos Y
    Biophys J; 2005 Mar; 88(3):2278-87. PubMed ID: 15626704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of arrestin and retinoids in the regeneration pathway of rhodopsin.
    Hofmann KP; Pulvermüller A; Buczyłko J; Van Hooser P; Palczewski K
    J Biol Chem; 1992 Aug; 267(22):15701-6. PubMed ID: 1386362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol.
    Rattner A; Smallwood PM; Nathans J
    J Biol Chem; 2000 Apr; 275(15):11034-43. PubMed ID: 10753906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin.
    Melia TJ; Cowan CW; Angleson JK; Wensel TG
    Biophys J; 1997 Dec; 73(6):3182-91. PubMed ID: 9414230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interphotoreceptor retinoid-binding protein removes all-
    Chen C; Adler L; Goletz P; Gonzalez-Fernandez F; Thompson DA; Koutalos Y
    J Biol Chem; 2017 Nov; 292(47):19356-19365. PubMed ID: 28972139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-trans retinal levels and formation of lipofuscin precursors after bleaching in rod photoreceptors from wild type and Abca4
    Adler L; Chen C; Koutalos Y
    Exp Eye Res; 2017 Feb; 155():121-127. PubMed ID: 28219732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interphotoreceptor retinoid-binding protein is the physiologically relevant carrier that removes retinol from rod photoreceptor outer segments.
    Wu Q; Blakeley LR; Cornwall MC; Crouch RK; Wiggert BN; Koutalos Y
    Biochemistry; 2007 Jul; 46(29):8669-79. PubMed ID: 17602665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of rhodopsin multiple phosphorylation.
    Ohguro H; Johnson RS; Ericsson LH; Walsh KA; Palczewski K
    Biochemistry; 1994 Feb; 33(4):1023-8. PubMed ID: 8305429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro.
    Sakamoto T; Khorana HG
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of opsin activation.
    Buczyłko J; Saari JC; Crouch RK; Palczewski K
    J Biol Chem; 1996 Aug; 271(34):20621-30. PubMed ID: 8702809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of opsin activity by all-trans-retinal.
    Surya A; Knox BE
    Exp Eye Res; 1998 May; 66(5):599-603. PubMed ID: 9628807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of retinol dehydrogenase from bovine retinal rod outer segments.
    Ishiguro S; Suzuki Y; Tamai M; Mizuno K
    J Biol Chem; 1991 Aug; 266(23):15520-4. PubMed ID: 1869569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin reconstitution in bleached rod outer segment membranes in the presence of a retinal-binding protein from the honeybee.
    Pepe IM; Cugnoli C; Schwemer J
    FEBS Lett; 1990 Jul; 268(1):177-9. PubMed ID: 2143484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of 11-cis-retinol dehydrogenase with the chromophore of retinal g protein-coupled receptor opsin.
    Chen P; Lee TD; Fong HK
    J Biol Chem; 2001 Jun; 276(24):21098-104. PubMed ID: 11274198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.