BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7947796)

  • 1. Contribution of residues in the reactive site loop of chymotrypsin inhibitor 2 to protein stability and activity.
    Jackson SE; Fersht AR
    Biochemistry; 1994 Nov; 33(46):13880-7. PubMed ID: 7947796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant chymotrypsin inhibitor 2: expression, kinetic analysis of inhibition with alpha-chymotrypsin and wild-type and mutant subtilisin BPN', and protein engineering to investigate inhibitory specificity and mechanism.
    Longstaff C; Campbell AF; Fersht AR
    Biochemistry; 1990 Aug; 29(31):7339-47. PubMed ID: 2207109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context dependence of protein secondary structure formation: the three-dimensional structure and stability of a hybrid between chymotrypsin inhibitor 2 and helix E from subtilisin Carlsberg.
    Osmark P; Sørensen P; Poulsen FM
    Biochemistry; 1993 Oct; 32(41):11007-14. PubMed ID: 8218165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of subtilisin BPN' by reaction site P1 mutants of Streptomyces subtilisin inhibitor.
    Kojima S; Nishiyama Y; Kumagai I; Miura K
    J Biochem; 1991 Mar; 109(3):377-82. PubMed ID: 1908859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the intramolecular hydrogen bond network in the inhibitory power of chymotrypsin inhibitor 2.
    Radisky ES; Lu CJ; Kwan G; Koshland DE
    Biochemistry; 2005 May; 44(18):6823-30. PubMed ID: 15865427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of small peptide substrates parallels binding of chymotrypsin inhibitor 2 for mutants of subtilisin BPN'.
    Eder J; Rheinnecker M; Fersht AR
    FEBS Lett; 1993 Dec; 335(3):349-52. PubMed ID: 8262182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective removal of individual disulfide bonds within a potato type II serine proteinase inhibitor from Nicotiana alata reveals differential stabilization of the reactive-site loop.
    Schirra HJ; Guarino RF; Anderson MA; Craik DJ
    J Mol Biol; 2010 Jan; 395(3):609-26. PubMed ID: 19925809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding, proteolytic, and crystallographic analyses of mutations at the protease-inhibitor interface of the subtilisin BPN'/chymotrypsin inhibitor 2 complex.
    Radisky ES; Kwan G; Karen Lu CJ; Koshland DE
    Biochemistry; 2004 Nov; 43(43):13648-56. PubMed ID: 15504027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a small peptide-based proteinase inhibitor by modeling the active-site region of barley chymotrypsin inhibitor 2.
    Leatherbarrow RJ; Salacinski HJ
    Biochemistry; 1991 Nov; 30(44):10717-21. PubMed ID: 1931991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary structure and inhibitory properties of a subtilisin-chymotrypsin inhibitor from Streptomyces virginiae.
    Terabe M; Kojima S; Taguchi S; Momose H; Miura K
    Eur J Biochem; 1994 Dec; 226(2):627-32. PubMed ID: 8001578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'.
    Braxton S; Wells JA
    Biochemistry; 1992 Sep; 31(34):7796-801. PubMed ID: 1510966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of the propeptide of subtilisin E as an intramolecular chaperone for protein folding. Refolding and inhibitory abilities of propeptide mutants.
    Li Y; Hu Z; Jordan F; Inouye M
    J Biol Chem; 1995 Oct; 270(42):25127-32. PubMed ID: 7559646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of the primary binding loop folded through an intramolecular interaction contributes to the strong chymotrypsin inhibitory activity of the chymotrypsin inhibitor from Erythrina variegata seeds.
    Iwanaga S; Nagata R; Miyamoto A; Kouzuma Y; Yamasaki N; Kimura M
    J Biochem; 1999 Jul; 126(1):162-7. PubMed ID: 10393334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing subtilisin BPN' to cleave substrates containing dibasic residues.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel double-headed proteinaceous inhibitor for metalloproteinase and serine proteinase.
    Hiraga K; Suzuki T; Oda K
    J Biol Chem; 2000 Aug; 275(33):25173-9. PubMed ID: 10827083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of long-range electrostatic interactions to the stabilization of the catalytic transition state of the serine protease subtilisin BPN'.
    Jackson SE; Fersht AR
    Biochemistry; 1993 Dec; 32(50):13909-16. PubMed ID: 8268166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of deletion in the flexible loop of the protease inhibitor SSI (Streptomyces subtilisin inhibitor) on interactions with proteases.
    Kojima S; Furukubo S; Kumagai I; Miura K
    Protein Eng; 1993 Apr; 6(3):297-303. PubMed ID: 8506264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding.
    Pantoliano MW; Whitlow M; Wood JF; Dodd SW; Hardman KD; Rollence ML; Bryan PN
    Biochemistry; 1989 Sep; 28(18):7205-13. PubMed ID: 2684274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of the C-terminal region of yeast proteinase B inhibitor 2 in its inhibitory action.
    Kojima S; Deguchi M; Miura K
    J Mol Biol; 1999 Feb; 286(3):775-85. PubMed ID: 10024450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new substrate and two inhibitors applicable for thermitase, subtilisin BPN' and alpha-chymotrypsin. Comparison of kinetic parameters with customary substrates and inhibitors.
    Brömme D; Fittkau S
    Biomed Biochim Acta; 1985; 44(7-8):1089-94. PubMed ID: 3910035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.