BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7947796)

  • 21. Contribution of a proline residue and a salt bridge to the stability of a type I reverse turn in chymotrypsin inhibitor-2.
    de Prat Gay G; Johnson CM; Fersht AR
    Protein Eng; 1994 Jan; 7(1):103-8. PubMed ID: 7908135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deciphering the role of the electrostatic interactions involving Gly70 in eglin C by total chemical protein synthesis.
    Lu WY; Starovasnik MA; Dwyer JJ; Kossiakoff AA; Kent SB; Lu W
    Biochemistry; 2000 Apr; 39(13):3575-84. PubMed ID: 10736156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera.
    Bania J; Stachowiak D; Polanowski A
    Eur J Biochem; 1999 Jun; 262(3):680-7. PubMed ID: 10411628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of Asn14 in the stability and conformation of the reactive-site loop of winged bean chymotrypsin inhibitor: crystal structures of two point mutants Asn14-->Lys and Asn14-->Asp.
    Ravichandran S; Dasgupta J; Chakrabarti C; Ghosh S; Singh M; Dattagupta JK
    Protein Eng; 2001 May; 14(5):349-57. PubMed ID: 11438758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutational analysis of the N-capping box of the alpha-helix of chymotrypsin inhibitor 2.
    elMasry NF; Fersht AR
    Protein Eng; 1994 Jun; 7(6):777-82. PubMed ID: 7937708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression and kinetic characterization of barley chymotrypsin inhibitors 1a and 1b.
    Greagg MA; Brauer AB; Leatherbarrow RJ
    Biochim Biophys Acta; 1994 Jun; 1222(2):179-86. PubMed ID: 8031854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of subtilisin BPN' and recombinant Streptomyces subtilisin inhibitors with substituted P1 site residues.
    Masuda-Momma K; Hatanaka T; Inouye K; Kanaori K; Tamura A; Akasaka K; Kojima S; Kumagai I; Miura K; Tonomura B
    J Biochem; 1993 Oct; 114(4):553-9. PubMed ID: 8276767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2.
    Jackson SE; Moracci M; elMasry N; Johnson CM; Fersht AR
    Biochemistry; 1993 Oct; 32(42):11259-69. PubMed ID: 8218191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The propeptide of subtilisin BPN' as a temporary inhibitor and effect of an amino acid replacement on its inhibitory activity.
    Kojima S; Minagawa T; Miura K
    FEBS Lett; 1997 Jul; 411(1):128-32. PubMed ID: 9247157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wheat Subtilisin/Chymotrypsin Inhibitor (WSCI) as a scaffold for novel serine protease inhibitors with a given specificity.
    Tedeschi F; Di Maro A; Facchiano A; Costantini S; Chambery A; Bruni N; Capuzzi V; Ficca AG; Poerio E
    Mol Biosyst; 2012 Oct; 8(12):3335-43. PubMed ID: 23090387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional interaction among catalytic residues in subtilisin BPN'.
    Carter P; Wells JA
    Proteins; 1990; 7(4):335-42. PubMed ID: 2199971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of protein-protein interactions by mutagenesis: direct versus indirect effects.
    Otzen DE; Fersht AR
    Protein Eng; 1999 Jan; 12(1):41-5. PubMed ID: 10065709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR solution structure of Apis mellifera chymotrypsin/cathepsin G inhibitor-1 (AMCI-1): structural similarity with Ascaris protease inhibitors.
    Cierpicki T; Bania J; Otlewski J
    Protein Sci; 2000 May; 9(5):976-84. PubMed ID: 10850807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformation and stability of barley chymotrypsin inhibitor-2 (CI-2) mutants containing multiple lysine substitutions.
    Roesler KR; Rao AG
    Protein Eng; 1999 Nov; 12(11):967-73. PubMed ID: 10585502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural factors contributing to the hydrophobic effect: the partly exposed hydrophobic minicore in chymotrypsin inhibitor 2.
    Otzen DE; Rheinnecker M; Fersht AR
    Biochemistry; 1995 Oct; 34(40):13051-8. PubMed ID: 7548064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.
    Itzhaki LS; Otzen DE; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):260-88. PubMed ID: 7490748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redesigning the reactive site loop of the wheat subtilisin/chymotrypsin inhibitor (WSCI) by site-directed mutagenesis. A protein-protein interaction study by affinity chromatography and molecular modeling.
    Bruni N; Di Maro A; Costantini S; Chambery A; Facchiano AM; Ficca AG; Parente A; Poerio E
    Biochimie; 2009 Sep; 91(9):1112-22. PubMed ID: 19500644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of the specificity of barley chymotrypsin inhibitor 2 by cysteine engineering of the P1 residue.
    Hasan Z; Leatherbarrow RJ
    Biochim Biophys Acta; 1998 May; 1384(2):325-34. PubMed ID: 9659394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.