These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 7947816)
21. A single-base substitution in exon 6 of the androgen receptor gene causing complete androgen insensitivity: the mutated receptor fails to transactivate but binds to DNA in vitro. Adeyemo O; Kallio PJ; Palvimo JJ; Kontula K; Jänne OA Hum Mol Genet; 1993 Nov; 2(11):1809-12. PubMed ID: 8281140 [TBL] [Abstract][Full Text] [Related]
22. The human androgen receptor: structure/function relationship in normal and pathological situations. Brinkmann AO; Jenster G; Kuiper GG; Ris C; van Laar JH; van der Korput JA; Degenhart HJ; Trifiro MA; Pinsky L; Romalo G J Steroid Biochem Mol Biol; 1992 Mar; 41(3-8):361-8. PubMed ID: 1562511 [TBL] [Abstract][Full Text] [Related]
23. Androgen receptor gene mutations in human prostate cancer. Newmark JR; Hardy DO; Tonb DC; Carter BS; Epstein JI; Isaacs WB; Brown TR; Barrack ER Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6319-23. PubMed ID: 1631125 [TBL] [Abstract][Full Text] [Related]
24. A G577R mutation in the human AR P box results in selective decreases in DNA binding and in partial androgen insensitivity syndrome. Nguyen D; Steinberg SV; Rouault E; Chagnon S; Gottlieb B; Pinsky L; Trifiro M; Mader S Mol Endocrinol; 2001 Oct; 15(10):1790-802. PubMed ID: 11579211 [TBL] [Abstract][Full Text] [Related]
25. Regions controlling hyperphosphorylation and conformation of the retinoblastoma gene product are independent of domains required for transcriptional repression. Hamel PA; Gill RM; Phillips RA; Gallie BL Oncogene; 1992 Apr; 7(4):693-701. PubMed ID: 1565466 [TBL] [Abstract][Full Text] [Related]
26. Molecular modeling and in vitro investigations of the human androgen receptor DNA-binding domain: application for the study of two mutations. Lobaccaro JM; Poujol N; Chiche L; Lumbroso S; Brown TR; Sultan C Mol Cell Endocrinol; 1996 Feb; 116(2):137-47. PubMed ID: 8647313 [TBL] [Abstract][Full Text] [Related]
27. Androgen receptor acetylation site mutations cause trafficking defects, misfolding, and aggregation similar to expanded glutamine tracts. Thomas M; Dadgar N; Aphale A; Harrell JM; Kunkel R; Pratt WB; Lieberman AP J Biol Chem; 2004 Feb; 279(9):8389-95. PubMed ID: 14670946 [TBL] [Abstract][Full Text] [Related]
28. Assembly functions of vesicular stomatitis virus matrix protein are not disrupted by mutations at major sites of phosphorylation. Kaptur PE; McKenzie MO; Wertz GW; Lyles DS Virology; 1995 Feb; 206(2):894-903. PubMed ID: 7856102 [TBL] [Abstract][Full Text] [Related]
29. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Duff J; McEwan IJ Mol Endocrinol; 2005 Dec; 19(12):2943-54. PubMed ID: 16081517 [TBL] [Abstract][Full Text] [Related]
30. Substitution of aspartic acid-686 by histidine or asparagine in the human androgen receptor leads to a functionally inactive protein with altered hormone-binding characteristics. Ris-Stalpers C; Trifiro MA; Kuiper GG; Jenster G; Romalo G; Sai T; van Rooij HC; Kaufman M; Rosenfield RL; Liao S Mol Endocrinol; 1991 Oct; 5(10):1562-9. PubMed ID: 1775137 [TBL] [Abstract][Full Text] [Related]
31. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Doesburg P; Kuil CW; Berrevoets CA; Steketee K; Faber PW; Mulder E; Brinkmann AO; Trapman J Biochemistry; 1997 Feb; 36(5):1052-64. PubMed ID: 9033395 [TBL] [Abstract][Full Text] [Related]
33. A single amino acid substitution (gly743 --> val) in the steroid-binding domain of the human androgen receptor leads to Reifenstein syndrome. Nakao R; Yanase T; Sakai Y; Haji M; Nawata H J Clin Endocrinol Metab; 1993 Jul; 77(1):103-7. PubMed ID: 8325932 [TBL] [Abstract][Full Text] [Related]
34. Localization of functional domains in the androgen receptor. MacLean HE; Warne GL; Zajac JD J Steroid Biochem Mol Biol; 1997 Jul; 62(4):233-42. PubMed ID: 9408077 [TBL] [Abstract][Full Text] [Related]
35. A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin. Li J; Fu J; Toumazou C; Yoon HG; Wong J Mol Endocrinol; 2006 Apr; 20(4):776-85. PubMed ID: 16373397 [TBL] [Abstract][Full Text] [Related]
36. Identification of the active site serine of hormone-sensitive lipase by site-directed mutagenesis. Holm C; Davis RC; Osterlund T; Schotz MC; Fredrikson G FEBS Lett; 1994 May; 344(2-3):234-8. PubMed ID: 8187891 [TBL] [Abstract][Full Text] [Related]
37. Functions of the C-terminal domain of CTP: phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential. Cornell RB; Kalmar GB; Kay RJ; Johnson MA; Sanghera JS; Pelech SL Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):699-708. PubMed ID: 7654214 [TBL] [Abstract][Full Text] [Related]
38. Consequences of poly-glutamine repeat length for the conformation and folding of the androgen receptor amino-terminal domain. Davies P; Watt K; Kelly SM; Clark C; Price NC; McEwan IJ J Mol Endocrinol; 2008 Nov; 41(5):301-14. PubMed ID: 18762554 [TBL] [Abstract][Full Text] [Related]
39. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Berrevoets CA; Doesburg P; Steketee K; Trapman J; Brinkmann AO Mol Endocrinol; 1998 Aug; 12(8):1172-83. PubMed ID: 9717843 [TBL] [Abstract][Full Text] [Related]
40. Mutant and wild-type androgen receptors exhibit cross-talk on androgen-, glucocorticoid-, and progesterone-mediated transcription. Yen PM; Liu Y; Palvimo JJ; Trifiro M; Whang J; Pinsky L; Jänne OA; Chin WW Mol Endocrinol; 1997 Feb; 11(2):162-71. PubMed ID: 9013763 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]